Show simple item record

dc.contributor.authorVallis, GK
dc.contributor.authorColyer, G
dc.contributor.authorGeen, R
dc.contributor.authorGerber, E
dc.contributor.authorJucker, M
dc.contributor.authorMaher, P
dc.contributor.authorPaterson, A
dc.contributor.authorPietschnig, M
dc.contributor.authorPenn, J
dc.contributor.authorThomson, SI
dc.date.accessioned2018-02-20T10:44:34Z
dc.date.issued2017-11-02
dc.description.abstractIsca is a framework for the idealized modelling of the global circulation of planetary atmospheres at varying levels of complexity and realism. The framework is an outgrowth of models from the Geophysical Fluid Dynamics Laboratory designed for Earth's atmosphere, but it may readily be extended into other planetary regimes. Various forcing and radiation options are available, from dry, time invariant, Newtonian thermal relaxation to moist dynamics with radiative transfer. Options are available in the dry thermal relaxation scheme to account for the effects of obliquity and eccentricity (and so seasonality), different atmospheric optical depths and a surface mixed layer. An idealized gray radiation scheme, a two-band scheme and a multi-band scheme are also available, all with simple moist effects and astronomically-based solar forcing. At the complex end of the spectrum the framework provides a direct connection to comprehensive atmospheric general circulation models. For Earth modeling, options include an aqua-planet and configurable continental outlines and topography. Continents may be defined by changing albedo, heat capacity and evaporative parameters, and/or by using a simple bucket hydrology model. Oceanic Q-fluxes may be added to reproduce specified sea-surface temperatures, with arbitrary continental distributions. Planetary atmospheres may be configured by changing planetary size and mass, solar forcing, atmospheric mass, radiative, and other parameters. Examples are given of various Earth configurations as well as a Jovian simulation, a Venusian simulation, and tidally-locked and other orbitally-resonant exo-planet simulations. The underlying model is written in Fortran and may largely be configured with Python scripts. Python scripts are also used to run the model on different architectures, to archive the output, and for diagnostics, graphics, and post-processing. All of these features are publicly available on a git-based repository.en_GB
dc.description.sponsorshipThis work was funded by the Leverhulme Trust, NERC (grant NE/M006123/1), the Royal Society (Wolfson Foundation), EPSRC, the Newton Fund (CSSP project) and the Marie Curie Foundationen_GB
dc.identifier.citationAvailable online 2 November 2017en_GB
dc.identifier.doi10.5194/gmd-2017-243
dc.identifier.urihttp://hdl.handle.net/10871/31579
dc.language.isoenen_GB
dc.publisherCopernicus Publicationsen_GB
dc.relation.urlhttp://hdl.handle.net/10871/31943
dc.rights© Author(s) 2017. This work is distributed under the Creative Commons Attribution 4.0 License.en_GB
dc.titleIsca, v1.0: A Framework for the Global Modelling of the Atmospheres of Earth and Other Planets at Varying Levels of Complexityen_GB
dc.typeArticleen_GB
dc.date.available2018-02-20T10:44:34Z
dc.descriptionThis is the author accepted manuscript. Available from the publisher via the DOI in this recorden_GB
dc.descriptionThe final published version, published in Geoscientific Model Development, is in ORE: http://hdl.handle.net/10871/31943
dc.identifier.journalGeoscientific Model Development Discussionsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record