dc.contributor.author | Zieger, P | |
dc.contributor.author | Väisänen, O | |
dc.contributor.author | Corbin, JC | |
dc.contributor.author | Partridge, DG | |
dc.contributor.author | Bastelberger, S | |
dc.contributor.author | Mousavi-Fard, M | |
dc.contributor.author | Rosati, B | |
dc.contributor.author | Gysel, M | |
dc.contributor.author | Krieger, UK | |
dc.contributor.author | Leck, C | |
dc.contributor.author | Nenes, A | |
dc.contributor.author | Riipinen, I | |
dc.contributor.author | Virtanen, A | |
dc.contributor.author | Salter, ME | |
dc.date.accessioned | 2018-03-06T15:46:53Z | |
dc.date.issued | 2017-07-03 | |
dc.description.abstract | Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth's radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8-15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models. | en_GB |
dc.description.sponsorship | P.Z. was partially financed by an Advanced Postdoc.Mobility fellowship of the Swiss National Science Foundation (grant no. P300P2_147776). M.E.S., C.L. and I.R. were financed by the Nordic Center of Excellence on Cryosphere-Atmosphere-Cloud-Climate-Interactions (NCoE CRAICC) and the Swedish Research Council (Vetenskapsradet). O.V. and A.V. were supported by the Academy of Finland Centre of Excellence (grant no. 272041) and The Doctoral School of the University of Eastern Finland. J.C.C. and M.G. received financial support from the European Research Commission via the ERC grant ERC-CoG 615922-BLACARAT. A.N. acknowledges support from a Georgia Power Scholar chair and a Cullen-Peck faculty fellowship. S.B. and M.M.-F. acknowledge funding by the Swiss National Science Foundation (grant no. 200020_146760/1). I. Tegen (TROPOS, Germany) is acknowledged for providing help with the sea spray source functions. We thank D. Eklöf and Z. Bacsik from the Department of Materials and Environmental Chemistry at Stockholm University for their assistance in the pycnometre and Fourier transform infrared spectrometer measurements. The ECHAM-HAMMOZ model is developed by a consortium composed of ETH Zurich, Max Planck Institut für Meteorologie, Forschungszentrum Jülich, University of Oxford, the Finnish Meteorological Institute and the Leibniz Institute for Tropospheric Research, and managed by the Center for Climate Systems Modeling (C2SM) at ETH Zurich. | en_GB |
dc.identifier.citation | Vol. 8, article 15883 | en_GB |
dc.identifier.doi | 10.1038/ncomms15883 | |
dc.identifier.uri | http://hdl.handle.net/10871/31888 | |
dc.language.iso | en | en_GB |
dc.publisher | Springer Nature | en_GB |
dc.relation.url | https://www.ncbi.nlm.nih.gov/pubmed/28671188 | en_GB |
dc.rights | © The Author(s) 2017. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ | en_GB |
dc.title | Revising the hygroscopicity of inorganic sea salt particles | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2018-03-06T15:46:53Z | |
exeter.place-of-publication | England | en_GB |
dc.description | This is the final version of the article. Available from Springer Nature via the DOI in this record. | en_GB |
dc.identifier.journal | Nature Communications | en_GB |