Show simple item record

dc.contributor.authorLutz, T
dc.contributor.authorClowsley, AH
dc.contributor.authorLin, R
dc.contributor.authorPagliara, S
dc.contributor.authorDi Michele, L
dc.contributor.authorSoeller, C
dc.date.accessioned2018-04-23T07:23:56Z
dc.date.issued2018-02-02
dc.description.abstractThe optical super-resolution technique DNA-PAINT (Point Accumulation Imaging in Nanoscale Topography) provides a flexible way to achieve imaging of nanoscale structures at ∼10-nanometer resolution. In DNA-PAINT, fluorescently labeled DNA “imager” strands bind transiently and with high specificity to complementary target “docking” strands anchored to the structure of interest. The localization of single binding events enables the assembly of a super-resolution image, and this approach effectively circumvents photobleaching. The solution exchange of imager strands is the basis of Exchange-PAINT, which enables multiplexed imaging that avoids chromatic aberrations. Fluid exchange during imaging typically requires specialized chambers or washes, which can disturb the sample. Additionally, diffusional washout of imager strands is slow in thick samples such as biological tissue slices. Here, we introduce Quencher-Exchange-PAINT—a new approach to Exchange-PAINT in regular open-top imaging chambers—which overcomes the comparatively slow imager strand switching via diffusional imager washout. Quencher-Exchange-PAINT uses “quencher” strands, i.e., oligonucleotides that prevent the imager from binding to the targets, to rapidly reduce unwanted single-stranded imager concentrations to negligible levels, decoupled from the absolute imager concentration. The quencher strands contain an effective dye quencher that reduces the fluorescence of quenched imager strands to negligible levels. We characterized Quencher-Exchange-PAINT when applied to synthetic, cellular, and thick tissue samples. Quencher-Exchange-PAINT opens the way for efficient multiplexed imaging of complex nanostructures, e.g., in thick tissues, without the need for washing steps. [Figure not available: see fulltext.]en_GB
dc.description.sponsorshipThe work was supported by funding from the Human Frontier Science Program (No. 0027/2013) and the Engineering and Physical Sciences Research Council of the UK (No. EP/N008235/1).en_GB
dc.identifier.citationFirst Online: 02 February 2018, pp. 1 - 14en_GB
dc.identifier.doi10.1007/s12274-018-1971-6
dc.identifier.urihttp://hdl.handle.net/10871/32558
dc.language.isoenen_GB
dc.publisherSpringer Verlagen_GB
dc.rights© The author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en_GB
dc.subjectfluorescence quencheren_GB
dc.subjectsuper-resolution microscopyen_GB
dc.subjectfluorescence imagingen_GB
dc.subjectDNA nanotechnologyen_GB
dc.subjectDNA-PAINTen_GB
dc.titleVersatile multiplexed super-resolution imaging of nanostructures by Quencher-Exchange-PAINTen_GB
dc.typeArticleen_GB
dc.date.available2018-04-23T07:23:56Z
dc.identifier.issn1998-0124
dc.descriptionThis is the final version of the article. Available from Springer Verlag via the DOI in this record.en_GB
dc.identifier.journalNano Researchen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record