Show simple item record

dc.contributor.authorDrummond, Benjamin
dc.contributor.authorMayne, Nathan
dc.contributor.authorManners, James
dc.contributor.authorCarter, Aarynn
dc.contributor.authorBoutle, Ian
dc.contributor.authorBaraffe, Isabelle
dc.contributor.authorHebrard, Eric
dc.contributor.authorTremblin, Pascal
dc.contributor.authorSing, David
dc.contributor.authorAmundsen, David
dc.contributor.authorAcreman, David
dc.date.accessioned2018-04-24T09:19:17Z
dc.date.issued2018-04-24
dc.date.updated2018-04-23T15:00:10Z
dc.description.abstractWe present a study of the effect of wind-driven advection on the chemical composition of hot Jupiter atmospheres using a fully-consistent 3D hydrodynamics, chemistry and radiative transfer code, the Met Office Unified Model (UM). Chemical modelling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure and chemical composition. In this letter we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude; directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase non-equilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.en_GB
dc.description.sponsorshipBD and DKS acknowledge funding from the European Research Council (ERC) under the European Unions Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 336792. NJM is part funded by a Leverhulme Trust Research Project Grant. JM and IAB acknowledge the support of a Met Office Academic Partnership secondment. ALC is funded by an STFC studentship. DSA acknowledges support from the NASA Astrobiology Program through the Nexus for Exoplanet System Science. This work used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility. This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National E-Infrastructure.en_GB
dc.identifier.doi10.24378/exe.307
dc.identifier.urihttp://hdl.handle.net/10871/32579
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.relation.urlhttp://hdl.handle.net/10871/31897en_GB
dc.rightsCC BY 4.0en_GB
dc.titleObservable signatures of wind-driven chemistry with a fully consistent three dimensional radiative hydrodynamics model of HD 209458b (dataset)en_GB
dc.typeDataseten_GB
dc.date.available2018-04-24T09:19:17Z
dc.descriptionrt_u-as329 - tracer experimenten_GB
dc.descriptionrt_u-as361 - transmission - equilibriumen_GB
dc.descriptionrt_u-as298 - transmission -relaxationen_GB
dc.descriptionrt_u-ar698 - emission - equilibriumen_GB
dc.descriptionrt_u-ar697 - emission - relaxationen_GB
dc.descriptionrt_u-ar586 - relaxationen_GB
dc.descriptionrt_u-ar412 - equilibriumen_GB
dc.descriptiontf_u-ar475 - start from spun up windsen_GB
dc.descriptiontf_u-ar354 - resolution 96X60X33 start from spun up windsen_GB
dc.descriptiontf_u-ar333 - resolution 72X45X33 start from spun up windsen_GB
dc.descriptiontf_u-aq931 - timescale x 1e-8en_GB
dc.descriptiontf_u-aq930 - timescale x 1e-4en_GB
dc.descriptiontf_u-aq815 - resolution 72X45X33en_GB
dc.descriptiontf_u-aq814 - resolution 96X60X33en_GB
dc.descriptiontf-u-aq801 - chemical equilibriumen_GB
dc.descriptiontf_u-aq557 - standard Cooper and Showman 2006en_GB
dc.descriptiontf_u-aq800 - Initialise all carbon in COen_GB
dc.descriptionThe data contained in this submission is associated with the publication Drummond et al, ApJL, 2018.en_GB
dc.descriptionThe article associated with this dataset is located in ORE at: http://hdl.handle.net/10871/31897en_GB
dc.identifier.journalAstrophysical Journal Lettersen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's licence is described as CC BY 4.0