Show simple item record

dc.contributor.authorBick, C
dc.date.accessioned2018-05-02T09:18:16Z
dc.date.issued2018-05-01
dc.description.abstractFunctional oscillator networks, such as neuronal networks in the brain, exhibit switching between metastable states involving many oscillators. We give exact results how such global dynamics can arise in paradigmatic phase oscillator networks: higher-order network interaction gives rise to metastable chimeras - localized frequency synchrony patterns - which are joined by heteroclinic connections. Moreover, we illuminate the mechanisms that underly the switching dynamics in these experimentally accessible networks.en_GB
dc.description.sponsorshipThis work has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. 626111.en_GB
dc.identifier.citationVol. 97 (5)en_GB
dc.identifier.doi10.1103/PhysRevE.97.050201
dc.identifier.urihttp://hdl.handle.net/10871/32679
dc.language.isoenen_GB
dc.publisherAmerican Physical Societyen_GB
dc.rights©2018 American Physical Societyen_GB
dc.subjectnlin.AOen_GB
dc.subjectnlin.AOen_GB
dc.subjectcond-mat.dis-nnen_GB
dc.subjectmath.DSen_GB
dc.subjectnlin.PSen_GB
dc.titleHeteroclinic switching between chimerasen_GB
dc.typeArticleen_GB
dc.date.available2018-05-02T09:18:16Z
dc.identifier.issn2470-0045
dc.descriptionThis is the author accepted manuscript. The final version is available from American Physical Society via the DOI in this record.en_GB
dc.identifier.journalPhysical Review Een_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record