Show simple item record

dc.contributor.authorByott, NP
dc.date.accessioned2018-06-29T11:13:12Z
dc.date.issued2013-02-21
dc.description.abstractLet L/K be a finite Galois extension of fields with group Γ . When Γ is nilpotent, we show that the problem of enumerating all nilpotent Hopf–Galois structures on L/K can be reduced to the corresponding problem for the Sylow subgroups of Γ . We use this to enumerate all nilpotent (resp. abelian) Hopf–Galois structures on a cyclic extension of arbitrary finite degree. When Γ is abelian, we give conditions under which every abelian Hopf–Galois structure on L/K has type Γ . We also give a criterion on n such that every Hopf–Galois structure on a cyclic extension of degree n has cyclic type.en_GB
dc.identifier.citationVol. 381 (2013), pp. 131-139.en_GB
dc.identifier.doihttps://doi.org/10.1016/j.jalgebra.2013.02.008
dc.identifier.urihttp://hdl.handle.net/10871/33328
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rightsCopyright © 2013 Elsevier Inc. All rights reserved.en_GB
dc.subjectHopf–Galois structureen_GB
dc.subjectField extensionen_GB
dc.subjectAbelian groupen_GB
dc.subjectNilpotent groupen_GB
dc.titleNilpotent and abelian Hopf-Galois structures on field extensionsen_GB
dc.typeArticleen_GB
dc.date.available2018-06-29T11:13:12Z
dc.identifier.issn0021-8693
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.en_GB
dc.identifier.journalJournal of Algebraen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record