dc.contributor.author | Byott, NP | |
dc.date.accessioned | 2018-06-29T11:13:12Z | |
dc.date.issued | 2013-02-21 | |
dc.description.abstract | Let L/K be a finite Galois extension of fields with group Γ . When Γ is nilpotent, we show that the problem of enumerating all
nilpotent Hopf–Galois structures on L/K can be reduced to the corresponding problem for the Sylow subgroups of Γ . We use this to enumerate all nilpotent (resp. abelian) Hopf–Galois structures on a cyclic extension of arbitrary finite degree. When Γ is abelian, we give conditions under which every abelian Hopf–Galois structure on L/K has type Γ . We also give a criterion on n such that every Hopf–Galois structure on a cyclic extension of degree n has cyclic type. | en_GB |
dc.identifier.citation | Vol. 381 (2013), pp. 131-139. | en_GB |
dc.identifier.doi | https://doi.org/10.1016/j.jalgebra.2013.02.008 | |
dc.identifier.uri | http://hdl.handle.net/10871/33328 | |
dc.language.iso | en | en_GB |
dc.publisher | Elsevier | en_GB |
dc.rights | Copyright © 2013 Elsevier Inc. All rights reserved. | en_GB |
dc.subject | Hopf–Galois structure | en_GB |
dc.subject | Field extension | en_GB |
dc.subject | Abelian group | en_GB |
dc.subject | Nilpotent group | en_GB |
dc.title | Nilpotent and abelian Hopf-Galois structures on field extensions | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2018-06-29T11:13:12Z | |
dc.identifier.issn | 0021-8693 | |
dc.description | This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record. | en_GB |
dc.identifier.journal | Journal of Algebra | en_GB |