Show simple item record

dc.contributor.authorLanger, A
dc.contributor.authorZink, T
dc.date.accessioned2018-10-09T12:56:02Z
dc.date.issued2018-12-14
dc.description.abstractLet R be an artinian local ring with perfect residue class eld k. We associate to certain 2-displays over the small ring of Witt vectors ^W (R) a crystal on SpecR. Let X be a scheme of K3-type over SpecR. We de ne a perfect bilinear form on the second crystalline cohomology group X which generalizes the Beauville-Bogomolov form for hyper-K ahler varieties over C. We use this form to prove a lifting criterion of Grothendieck- Messing type for schemes of K3-type. The crystalline cohomology H2 crys(X= ^W (R)) is endowed with the structure of a 2-display such that the Beauville-Bogomolov form becomes a bilinear form in the sense of displays. If X is ordinary the in nitesimal deformations of X correspond bijectively to in nitesimal deformations of the 2-display of X with its Beauville-Bogomolov form. For ordinary K3-surfaces X=R we prove that the slope spectral sequence of the de Rham-Witt complex degenerates and that H2 crys(X=W(R)) has a canonical Hodge- Witt decomposition.en_GB
dc.identifier.citationVol. 1 (4), pp. 455-517.en_GB
dc.identifier.doi10.2140/tunis.2019.1.455
dc.identifier.urihttp://hdl.handle.net/10871/34239
dc.language.isoenen_GB
dc.publisherTunisian Mathematical Society / MSPen_GB
dc.rights© 2019 Mathematical Sciences Publishers.
dc.titleGrothendieck-Messing deformation theory for varieties of K3-typeen_GB
dc.typeArticleen_GB
dc.descriptionThis is the final version. Available from Tunisian Mathematical Society / MSP via the DOI in this record.en_GB
dc.identifier.journalTunisian Journal of Mathematicsen_GB
refterms.dateFOA2019-02-15T11:41:12Z


Files in this item

This item appears in the following Collection(s)

Show simple item record