Show simple item record

dc.contributor.authorHorsley, SAR
dc.date.accessioned2018-11-14T14:48:51Z
dc.date.issued2018-10-18
dc.description.abstractThrough understanding Maxwell's equations as an effective Dirac equation (the optical Dirac equation), we reexamine the relationship between electromagnetic interface states and topology. We illustrate a simple case where electromagnetic material parameters play the roles of mass and energy in an equivalent Dirac equation. The modes trapped between a gyrotropic medium and a mirror are then the counterpart of those at a domain wall, where the mass of the Dirac particle changes sign. Considering the general case of arbitrary electromagnetic media, we provide an analytical proof relating the integral of the Berry curvature (the Chern number) to the number of interface states. We show that this reduces to the usual result for periodic media and also that the Chern number can be computed without knowledge of how the material parameters depend on frequency.en_GB
dc.description.sponsorshipFinancial support was provided by the Royal Society and TATA (Grant No. RPG-2016-186).en_GB
dc.identifier.citationVol. 98, article number 043837en_GB
dc.identifier.doi10.1103/PhysRevA.98.043837
dc.identifier.urihttp://hdl.handle.net/10871/34768
dc.language.isoenen_GB
dc.publisherAmerican Physical Societyen_GB
dc.rights© 2018 American Physical Societyen_GB
dc.subjectTopological phases of matteren_GB
dc.subjectEdge statesen_GB
dc.subjectGeometrical and wave opticsen_GB
dc.subjectMetamaterialsen_GB
dc.subjectOptical materials & elementsen_GB
dc.subjectTopological materialsen_GB
dc.subjectPolarization of lighten_GB
dc.titleTopology and the optical Dirac equationen_GB
dc.typeArticleen_GB
dc.date.available2018-11-14T14:48:51Z
dc.identifier.issn2469-9926
dc.descriptionThis is the final published version.en_GB
dc.descriptionAvailable from American Physical Society via the DOI in this record.en_GB
dc.identifier.journalPhysical Review Aen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record