Show simple item record

dc.contributor.authorEdmunds, DE
dc.contributor.authorMelkonian, H
dc.date.accessioned2018-12-05T12:59:48Z
dc.date.issued2018-10-12
dc.description.abstractAn integral inequality due to Ball involves the Lq norm of the sincp function; the dependence of this norm on q as q → ∞ is now understood. By use of recent inequalities involving p−trigonometric functions (1 < p < ∞) we obtain asymptotic information about the analogue of Ball’s integral when sin is replaced by sinp .en_GB
dc.identifier.citationVol. 147, pp. 229-238en_GB
dc.identifier.doi10.1090/proc/14264
dc.identifier.urihttp://hdl.handle.net/10871/34999
dc.language.isoenen_GB
dc.publisherAmerican Mathematical Societyen_GB
dc.rights© Copyright 2018 American Mathematical Societyen_GB
dc.subjectp-Ball’s integral inequalityen_GB
dc.subjectgeneralised trigonometric functionsen_GB
dc.subjectp-Laplacian operatoren_GB
dc.subjectp-sinc functionen_GB
dc.subjectasymptotic expansionen_GB
dc.titleBehaviour of Lq norms of the sincp functionen_GB
dc.typeArticleen_GB
dc.date.available2018-12-05T12:59:48Z
dc.descriptionThis is the author accepted manuscript. The final version is available from American Mathematical Society via the DOI in this recorden_GB
dc.identifier.journalProceedings of the American Mathematical Societyen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2018-09-30
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-10-12
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2018-12-05T12:57:12Z
refterms.versionFCDAM
refterms.dateFOA2018-12-05T12:59:50Z


Files in this item

This item appears in the following Collection(s)

Show simple item record