dc.contributor.author | Edmunds, DE | |
dc.contributor.author | Melkonian, H | |
dc.date.accessioned | 2018-12-05T12:59:48Z | |
dc.date.issued | 2018-10-12 | |
dc.description.abstract | An integral inequality due to Ball involves the Lq norm of the sincp
function; the dependence of this norm on q as q → ∞ is now understood.
By use of recent inequalities involving p−trigonometric functions (1 <
p < ∞) we obtain asymptotic information about the analogue of Ball’s
integral when sin is replaced by sinp . | en_GB |
dc.identifier.citation | Vol. 147, pp. 229-238 | en_GB |
dc.identifier.doi | 10.1090/proc/14264 | |
dc.identifier.uri | http://hdl.handle.net/10871/34999 | |
dc.language.iso | en | en_GB |
dc.publisher | American Mathematical Society | en_GB |
dc.rights | © Copyright 2018 American Mathematical Society | en_GB |
dc.subject | p-Ball’s integral inequality | en_GB |
dc.subject | generalised trigonometric functions | en_GB |
dc.subject | p-Laplacian operator | en_GB |
dc.subject | p-sinc function | en_GB |
dc.subject | asymptotic expansion | en_GB |
dc.title | Behaviour of Lq norms of the sincp function | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2018-12-05T12:59:48Z | |
dc.description | This is the author accepted manuscript. The final version is available from American Mathematical Society via the DOI in this record | en_GB |
dc.identifier.journal | Proceedings of the American Mathematical Society | en_GB |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2018-09-30 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2018-10-12 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2018-12-05T12:57:12Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2018-12-05T12:59:50Z | |