Show simple item record

dc.contributor.authorAl Nahas, K
dc.contributor.authorCama, J
dc.contributor.authorSchaich, M
dc.contributor.authorHammond, K
dc.contributor.authorDeshpande, S
dc.contributor.authorDekker, C
dc.contributor.authorRyadnov, MG
dc.contributor.authorKeyser, UF
dc.date.accessioned2019-03-08T15:49:22Z
dc.date.issued2019-01-30
dc.description.abstractThe spread of bacterial resistance against conventional antibiotics generates a great need for the discovery of novel antimicrobials. Polypeptide antibiotics constitute a promising class of antimicrobial agents that favour attack on bacterial membranes. However, efficient measurement platforms for evaluating their mechanisms of action in a systematic manner are lacking. Here we report an integrated lab-on-a-chip multilayer microfluidic platform to quantify the membranolytic efficacy of such antibiotics. The platform is a biomimetic vesicle-based screening assay, which generates giant unilamellar vesicles (GUVs) in physiologically relevant buffers on demand. Hundreds of these GUVs are individually immobilised downstream in physical traps connected to separate perfusion inlets that facilitate controlled antibiotic delivery. Antibiotic efficacy is expressed as a function of the time needed for an encapsulated dye to leak out of the GUVs as a result of antibiotic treatment. This proof-of-principle study probes the dose response of an archetypal polypeptide antibiotic cecropin B on GUVs mimicking bacterial membranes. The results of the study provide a foundation for engineering quantitative, high-throughput microfluidics devices for screening antibiotics.en_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.description.sponsorshipCambridge-National Physical Laboratory (UK)en_GB
dc.description.sponsorshipWinton Programme for the Physics of Sustainabilityen_GB
dc.description.sponsorshipTrinity-Henry Barlow Scholarshipen_GB
dc.description.sponsorshipBiotechnology and Biological Science Research Council (BBSRC)en_GB
dc.description.sponsorshipFriedrich-Naumann-Foundationen_GB
dc.description.sponsorshipUK Department for Business, Energy and Industrial Strategyen_GB
dc.description.sponsorshipEuropean Metrology Research Programme (EMRP)en_GB
dc.description.sponsorshipNetherlands Organisation for Scientific Research (NWO/OCW)en_GB
dc.identifier.citationVol. 19, 837-844en_GB
dc.identifier.doi10.1039/c8lc00932e
dc.identifier.grantnumber647144en_GB
dc.identifier.grantnumber669598en_GB
dc.identifier.urihttp://hdl.handle.net/10871/36359
dc.language.isoenen_GB
dc.publisherRoyal Society of Chemistryen_GB
dc.rightsOpen Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.en_GB
dc.titleA microfluidic platform for the characterisation of membrane active antimicrobialsen_GB
dc.typeArticleen_GB
dc.date.available2019-03-08T15:49:22Z
dc.identifier.issn1473-0189
dc.descriptionThis is the final version. Available from the publisher via the DOI in this record.en_GB
dc.identifier.journalLab on a Chipen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2018-12-05
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2019-01-30
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-03-08T14:52:54Z
refterms.versionFCDVoR
refterms.dateFOA2019-03-08T15:49:24Z
refterms.panelBen_GB
refterms.depositExceptionpublishedGoldOA
refterms.depositExceptionExplanationhttps://doi.org/10.1039/C8LC00932E


Files in this item

This item appears in the following Collection(s)

Show simple item record