Show simple item record

dc.contributor.authorBoulton, L
dc.contributor.authorMelkonian, H
dc.date.accessioned2019-04-02T12:16:22Z
dc.date.issued2019-01-07
dc.description.abstractInIn this paper we formulate a concrete method for determining whether a system of dilated periodic functions forms a Riesz basis in L2(0,1). This method relies on a general framework developed by Hedenmalm, Lindqvist and Seip about 20 years ago, which turns the basis question into one about the localisation of the zeros and poles of a corresponding analytic multiplier. Our results improve upon various criteria formulated previously, which give sufficient conditions for invertibility of the multiplier in terms of sharp estimates on the Fourier coefficients. Our focus is on the concrete verification of the hypotheses by means of analytical or accurate numerical approximations. We then examine the basis question for profiles in a neighbourhood of a non-basis family generated by periodic jump functions. For one of these profiles, the p-sine functions, we determine a threshold for positive answer to the basis question which improves upon those found recently.en_GB
dc.identifier.citationVol. 38 (1), pp. 107-124en_GB
dc.identifier.doi10.4171/ZAA/1630
dc.identifier.urihttp://hdl.handle.net/10871/36705
dc.language.isoenen_GB
dc.publisherEMS Publishing Houseen_GB
dc.rights.embargoreasonUnder embargo until 7 January 2021 in compliance with publisher policy
dc.rights© 2019 EMS Publishing House. All rights reserveden_GB
dc.subjectBases of dilated periodic functionsen_GB
dc.subjectp-trigonometric functionsen_GB
dc.subjectfull equivalence to the Fourier basisen_GB
dc.titleA multi-term basis criterion for families of dilated periodic functionsen_GB
dc.typeArticleen_GB
dc.date.available2019-04-02T12:16:22Z
dc.descriptionThis is the author accepted manuscript. The final version is available from EMS Publishing House via the DOI in this recorden_GB
dc.identifier.journalZeitschrift für Analysis und Ihre Anwendungenen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2018-07-05
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-07-05
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-04-02T12:10:31Z
refterms.versionFCDAM
refterms.panelUnspecifieden_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record