Show simple item record

dc.contributor.authorHartmann, RR
dc.contributor.authorSaroka, VA
dc.contributor.authorPortnoi, ME
dc.date.accessioned2019-04-02T12:57:52Z
dc.date.issued2019-04-01
dc.description.abstractWe use the robust nearest-neighbour tight-binding approximation to study on the same footing interband dipole transitions in narrow-bandgap carbon nanotubes and graphene nanoribbons. It is demonstrated that curvature effects in metallic single-walled carbon nanotubes and edge effects in gapless graphene nanoribbons not only open up bang gaps, which typically correspond to THz frequencies, but also result in a giant enhancement of the probability of optical transitions across these gaps. Moreover, the matrix element of the velocity operator for these transitions has a universal value (equal to the Fermi velocity in graphene) when the photon energy coincides with the band-gap energy. Upon increasing the excitation energy, the transition matrix element first rapidly decreases (for photon energies remaining in the THz range but exceeding two band gap energies it is reduced by three orders of magnitude), and thereafter it starts to increase proportionally to the photon frequency. A similar effect occurs in an armchair carbon nanotube with a band gap opened and controlled by a magnetic field applied along the nanotube axis. There is a direct correspondence between armchair graphene nanoribbons and single-walled zigzag carbon nanotubes. The described sharp photon-energy dependence of the transition matrix element together with the van Hove singularity at the band gap edge of the considered quasi-one-dimensional systems make them promising candidates for active elements of coherent THz radiation emitters. The effect of Pauli blocking of low-energy interband transitions caused by residual doping can be suppressed by creating a population inversion using high-frequency (optical) excitation.en_GB
dc.description.sponsorshipEuropean Union FP7en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipURCOen_GB
dc.description.sponsorshipGovernment of the Russian Federationen_GB
dc.identifier.citationVol. 125, article 151607en_GB
dc.identifier.doi10.1063/1.5080009
dc.identifier.grantnumberFP7-60752en_GB
dc.identifier.grantnumberH2020-644076en_GB
dc.identifier.grantnumberFP7-612285en_GB
dc.identifier.grantnumberFP7-316432en_GB
dc.identifier.grantnumberFP7-612624en_GB
dc.identifier.grantnumber17 F U 2TAY16-2TAY17en_GB
dc.identifier.urihttp://hdl.handle.net/10871/36706
dc.language.isoenen_GB
dc.publisherAIP Publishingen_GB
dc.rights© 2019 Author(s). Published under license by AIP Publishingen_GB
dc.titleInterband transitions in narrow-gap carbon nanotubes and graphene nanoribbonsen_GB
dc.typeArticleen_GB
dc.date.available2019-04-02T12:57:52Z
dc.descriptionThis is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record en_GB
dc.identifier.eissn1089-7550
dc.identifier.journalJournal of Applied Physicsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2019-02-01
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2019-02-01
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-04-02T12:52:40Z
refterms.versionFCDAM
refterms.dateFOA2019-04-02T12:57:55Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record