Show simple item record

dc.contributor.authorSchaich, M
dc.contributor.authorCama, J
dc.contributor.authorAl Nahas, K
dc.contributor.authorSobota, D
dc.contributor.authorSleath, H
dc.contributor.authorJahnke, K
dc.contributor.authorDeshpande, S
dc.contributor.authorDekker, C
dc.contributor.authorKeyser, UF
dc.date.accessioned2019-04-18T14:59:11Z
dc.date.issued2019-04-17
dc.description.abstractThe low membrane permeability of candidate drug molecules is a major challenge in drug development and insufficient permeability is one reason for the failure of antibiotic treatment against bacteria. Quantifying drug transport across specific pathways in living systems is challenging since one typically lacks knowledge of the exact lipidome and proteome of the individual cells under investigation. Here, we quantify drug permeability across biomimetic liposome membranes, with comprehensive control over membrane composition. We integrate the microfluidic octanol-assisted liposome assembly platform with an optofluidic transport assay to create a complete microfluidic total analysis system for quantifying drug permeability. Our system enables us to form liposomes with charged lipids mimicking the negative charge of bacterial membranes at physiological pH and salt concentrations, which proved difficult with previous liposome formation techniques. Furthermore, the microfluidic technique yields an order of magnitude more liposomes per experiment than previous assays. We demonstrate the feasibility of the assay by determining the permeability coefficient of norfloxacin and ciprofloxacin across biomimetic liposomes.en_GB
dc.description.sponsorshipFriedrich-Naumann-Foundation for Freedomen_GB
dc.description.sponsorshipBiotechnology and Biological Sciences Research Council (BBSRC)en_GB
dc.description.sponsorshipWellcome Trusten_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipWinton Programme for the Physics of Sustainabilityen_GB
dc.description.sponsorshipEuropean Research Councilen_GB
dc.description.sponsorshipNetherlands Organisation for Scientific Research (NWO/OCW)en_GB
dc.identifier.citationPublished online 17 April 2019en_GB
dc.identifier.doi10.1021/acs.molpharmaceut.9b00086
dc.identifier.grantnumber204909/Z/16/Zen_GB
dc.identifier.grantnumber669598en_GB
dc.identifier.grantnumber647144en_GB
dc.identifier.urihttp://hdl.handle.net/10871/36873
dc.language.isoenen_GB
dc.publisherAmerican Chemical Societyen_GB
dc.rights.embargoreasonUnder embargo until 17 April 2020 in compliance with publisher policyen_GB
dc.rights© 2019 American Chemical Societyen_GB
dc.subjectMicrofluidicsen_GB
dc.subjectLab on chipen_GB
dc.subjectLiposomesen_GB
dc.subjectGUVen_GB
dc.subjectAntibioticsen_GB
dc.subjectDrug transporten_GB
dc.subjectPermeabilityen_GB
dc.titleAn integrated microfluidic platform for quantifying drug permeation across biomimetic vesicle membranesen_GB
dc.typeArticleen_GB
dc.date.available2019-04-18T14:59:11Z
dc.identifier.issn1543-8384
dc.descriptionThis is the author accepted manuscript. The final version is available from American Chemical Society via the DOI in this record en_GB
dc.identifier.journalMolecular Pharmaceuticsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2019-04-17
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2019-04-17
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-04-18T13:54:52Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record