Tropical tree cover in a heterogeneous environment: a reaction-diffusion model
Wuyts, B; Verschueren Van Rees, N
Date: 28 June 2019
Journal
PLoS ONE
Publisher
Public Library of Science (PLoS)
Publisher DOI
Abstract
Observed bimodal tree cover distribution sat particular environmental conditions and theoretical models indicate that some areas in the tropics can be in either of the alternative stable vegetation states forest or savanna.However,when including spatial interaction in nonspatial differential equation models of a bistable quantity, only ...
Observed bimodal tree cover distribution sat particular environmental conditions and theoretical models indicate that some areas in the tropics can be in either of the alternative stable vegetation states forest or savanna.However,when including spatial interaction in nonspatial differential equation models of a bistable quantity, only the state with the lowest potential energy remains stable. Our recent reaction-diffusion model of Amazonian tree cover confirmed this and was able to reproduce the observed spatial distribution of forest versus savanna satisfactorily when forced by heterogeneous environmental and anthropogenic variables, even though bistability was underestimated. These conclusions were solely based on simulation results for one set of parameters. Here, we perform ananalytical and numerical analysis of the model. We derive the Maxwell point (MP) of the homogeneous reaction-diffusion equation without savanna trees as a function of rainfall and human impact and show that the front between forest and nonforest settles at this point as long as savanna tree cover near the front remains sufficiently low. For parameters resulting in higher savanna tree cover near the front, we also find irregular forest-savanna cycles and woodland-savanna bistability, which can both explain the remaining observed bimodality.
Mathematics and Statistics
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0