Show simple item record

dc.contributor.authorLiuzzo-Scorpo, P
dc.contributor.authorCorrea, LA
dc.contributor.authorPollock, FA
dc.contributor.authorGórecka, A
dc.contributor.authorModi, K
dc.contributor.authorAdesso, G
dc.date.accessioned2019-07-04T11:02:33Z
dc.date.issued2018-06-07
dc.description.abstractThe problem of estimating the frequency of a two-level atom in a noisy environment is studied. Our interest is to minimise both the energetic cost of the protocol and the statistical uncertainty of the estimate. In particular, we prepare a probe in a 'GHZ-diagonal' state by means of a sequence of qubit gates applied on an ensemble of n atoms in thermal equilibrium. Noise is introduced via a phenomenological time-non-local quantum master equation, which gives rise to a phase-covariant dissipative dynamics. After an interval of free evolution, the n-atom probe is globally measured at an interrogation time chosen to minimise the error bars of the final estimate. We model explicitly a measurement scheme which becomes optimal in a suitable parameter range, and are thus able to calculate the total energetic expenditure of the protocol. Interestingly, we observe that scaling up our multipartite entangled probes offers no precision enhancement when the total available energy is limited. This is at stark contrast with standard frequency estimation, where larger probes - more sensitive but also more 'expensive' to prepare - are always preferred. Replacing by the resource that places the most stringent limitation on each specific experimental setup, would thus help to formulate more realistic metrological prescriptions.en_GB
dc.description.sponsorshipRoyal Societyen_GB
dc.description.sponsorshipEuropean Research Councilen_GB
dc.description.sponsorshipFoundational Questions Instituteen_GB
dc.description.sponsorshipCOST Actionen_GB
dc.identifier.citationVol. 20, article 063009en_GB
dc.identifier.doi10.1088/1367-2630/aac5b6
dc.identifier.grantnumberIE150570en_GB
dc.identifier.grantnumberIE150570en_GB
dc.identifier.grantnumberFQXi-RFP-1601en_GB
dc.identifier.grantnumberMP1209en_GB
dc.identifier.urihttp://hdl.handle.net/10871/37841
dc.language.isoenen_GB
dc.publisherIOP Publishing for Deutsche Physikalische Gesellschaften_GB
dc.rights© 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft. Open access. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_GB
dc.titleEnergy-efficient quantum frequency estimationen_GB
dc.typeArticleen_GB
dc.date.available2019-07-04T11:02:33Z
dc.identifier.issn1367-2630
dc.descriptionThis is the final version. Available on open access from IOP Publishing via the DOI in this recorden_GB
dc.identifier.journalNew Journal of Physicsen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_GB
dcterms.dateAccepted2018-05-17
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2018-06-07
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-07-04T10:59:19Z
refterms.versionFCDVoR
refterms.dateFOA2019-07-04T11:02:40Z
refterms.panelBen_GB
refterms.depositExceptionpublishedGoldOA


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft. Open access. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Except where otherwise noted, this item's licence is described as © 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft. Open access. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.