Show simple item record

dc.contributor.authorPalacios-Berraquero, C
dc.contributor.authorBarbone, M
dc.contributor.authorKara, DM
dc.contributor.authorChen, X
dc.contributor.authorGoykhman, I
dc.contributor.authorYoon, D
dc.contributor.authorOtt, AK
dc.contributor.authorBeitner, J
dc.contributor.authorWatanabe, K
dc.contributor.authorTaniguchi, T
dc.contributor.authorFerrari, AC
dc.contributor.authorAtatüre, M
dc.date.accessioned2019-09-03T11:12:14Z
dc.date.issued2016-09-26
dc.description.abstractTransition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.en_GB
dc.description.sponsorshipEuropean Unionen_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citationVol. 7, article. 12978en_GB
dc.identifier.doi10.1038/ncomms12978
dc.identifier.grantnumber604391en_GB
dc.identifier.grantnumberHetero2Den_GB
dc.identifier.grantnumberPHOENICSen_GB
dc.identifier.grantnumberEP/K01711X/1en_GB
dc.identifier.grantnumberEP/K017144/1en_GB
dc.identifier.grantnumberEP/N010345/1en_GB
dc.identifier.grantnumberEP/M507799/1en_GB
dc.identifier.grantnumberEP/L016087/1en_GB
dc.identifier.grantnumberEP/M013243/1en_GB
dc.identifier.grantnumberEP/G037221/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/38522
dc.language.isoenen_GB
dc.publisherNature Researchen_GB
dc.rights©The Author(s) 2016. Open access. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en_GB
dc.titleAtomically thin quantum light-emitting diodesen_GB
dc.typeArticleen_GB
dc.date.available2019-09-03T11:12:14Z
dc.descriptionThis is the final version. Available on open access from Nature Research via the DOI in this recorden_GB
dc.descriptionData availability: The data that support the findings of this study are available from the corresponding authors upon request.en_GB
dc.identifier.eissn2041-1723
dc.identifier.journalNature Communicationsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2016-08-23
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2016-09-26
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-09-03T11:09:05Z
refterms.versionFCDVoR
refterms.dateFOA2019-09-03T11:12:18Z
refterms.panelBen_GB
refterms.depositExceptionpublishedGoldOA


Files in this item

This item appears in the following Collection(s)

Show simple item record