Show simple item record

dc.contributor.authorBowden, GJ
dc.contributor.authorvan der Laan, G
dc.contributor.authorHesjedal, T
dc.contributor.authorHicken, RJ
dc.date.accessioned2019-09-03T11:45:42Z
dc.date.issued2019-07-30
dc.description.abstractIn 1878, the Dutch physicist Hendrik Antoon Lorentz first addressed the calculation of the local electric field at an atomic site in a ferroelectric material, generated by all the other electric dipoles within the sample. This calculation, which applies equally well to ferromagnets, is taught in Universities around the World. Here we demonstrate that the Lorentz concept can be used to speed up calculations of the local dipolar field in square, circular, and elliptical shaped monolayers and thin films, not only at the center of the film, but across the sample. Calculations show that long elliptical and rectangular films should exhibit the narrowest ferromagnetic resonance (FMR) linewidth. In addition, discrete dipole calculations show that the Lorentz cavity field $\left({\mu }_{0}M/3\right)$ does not hold in tetragonal films. Depending on the ratio (b/a), the local field can be either less/greater than $\left({\mu }_{0}M/3\right):$ an observation that has implications for FMR. 3D simple cubic (SC) systems are also examined. For example, while most texts discuss the Lorentz cavity field in terms of a Lorentz sphere, the Lorentz cavity field still holds when a Lorentz sphere is replaced by a the Lorentz cube, but only in cubic SC, FCC and BCC systems. Finally, while the primary emphasis is on the discrete dipole–dipole interaction, contact is made with the continuum model. For example, in the continuous SC dipole model, just one monolayer is required to generate the Lorentz cavity field. This is in marked contrast to the discrete dipole model, where a minimum of five adjacent monolayers is required.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citationVol. 21, article 073063en_GB
dc.identifier.doi10.1088/1367-2630/ab2f63
dc.identifier.grantnumberEP/P021190/1en_GB
dc.identifier.grantnumberEP/P020151/1en_GB
dc.identifier.grantnumberEP/P02047X/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/38524
dc.language.isoenen_GB
dc.publisherIOP Publishing for Deutsche Physikalische Gesellschaften_GB
dc.rights© 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. Open access. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_GB
dc.subjectmagnetic monolayersen_GB
dc.subjectLorentz magnetic fielden_GB
dc.subjectinternal dipolar fieldsen_GB
dc.subjectferromagnetic resonanceen_GB
dc.subjectmagnetic modelingen_GB
dc.titleExpanding the Lorentz concept in magnetismen_GB
dc.typeArticleen_GB
dc.date.available2019-09-03T11:45:42Z
dc.identifier.issn1367-2630
exeter.article-numberARTN 073063en_GB
dc.descriptionThis is the final version. Available on open access from IOP Publishing via the DOI in this recorden_GB
dc.identifier.journalNew Journal of Physicsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2019-07-04
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2019-07-30
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-09-03T11:43:27Z
refterms.versionFCDVoR
refterms.dateFOA2019-09-03T11:45:45Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record