Show simple item record

dc.contributor.authorMeakin, J
dc.contributor.authorAmes, RM
dc.contributor.authorJeynes, JCG
dc.contributor.authorWelsman, JR
dc.contributor.authorGundry, MJ
dc.contributor.authorKnapp, KM
dc.contributor.authorEverson, RM
dc.date.accessioned2019-09-06T08:18:25Z
dc.date.issued2019-09-06
dc.description.abstractThis is the dataset used for the Meakin et al. (2019) article "The feasibility of using citizens to segment anatomy from medical images: accuracy and motivation" published in PLOS ONE.en_GB
dc.description.sponsorshipWellcome Trusten_GB
dc.identifier.doi10.24378/exe.1703
dc.identifier.grantnumberWT105618MAen_GB
dc.identifier.urihttp://hdl.handle.net/10871/38552
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.relation.urlhttp://hdl.handle.net/10871/39200en_GB
dc.rights.embargoreasonData are only available for research purposes.en_GB
dc.rightsThe data are available on request for research purposes only.en_GB
dc.titleCitSeg pilot dataen_GB
dc.typeDataseten_GB
dc.date.available2019-09-06T08:18:25Z
dc.descriptionThe data comprises 150 dicom images of the lumbar spine. These images are a randomly selected set of slices from magnetic resonance imaging scans of 15 healthy volunteers. The scans were acquired axially using a 1.5T scanner. The data also comprises segmentation data from 32 participants (29 citizens and 3 experts). The data is saved as a single matlab data file for each participant. Within each file, the data are organised by image (name corresponding to the above image data), session, participant id, participant age, participant sex, and xy coordinates. The xy coordinates are separated into individual regions.en_GB
dc.descriptionThe article associated with this dataset is located in ORE at: http://hdl.handle.net/10871/39200en_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
exeter.funder::Wellcome Trusten_GB
rioxxterms.versionNAen_GB
rioxxterms.typeOtheren_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record