Show simple item record

dc.contributor.authorRogers, Tj
dc.contributor.authorGardner, P
dc.contributor.authorDervilis, N
dc.contributor.authorWorden, K
dc.contributor.authorMaguire, Ae
dc.contributor.authorPapatheou, E
dc.contributor.authorCross, Ej
dc.date.accessioned2019-10-02T12:29:54Z
dc.date.issued2019-10-12
dc.description.abstractThere exists continued interest in building accurate models of wind turbine power curves for better understanding of performance or assessment of the condition of the turbine or both. Better predictions of the power curve allow increased insight into the operation of the turbine, aid operational decision making, and can be a key feature of online monitoring and fault detection strategies. This work proposes the use of a heteroscedastic Gaussian Process model for this task. The model has a number of attractive properties when modelling power curves. These include, removing the need to specify a parametric functional form for the power curve and automatic quantification of the variance in the prediction. The model exists within a Bayesian framework which exhibits built-in protection against over-fitting and robustness to noisy measurements. The model is shown to be effective on data collected from an operational wind turbine, returning accurate mean predictions (< 1% normalised mean-squared error) and higher likelihoods than a corresponding homoscedastic model.en_GB
dc.description.sponsorshipEPSRCen_GB
dc.identifier.citationPublished online 12 October 2019en_GB
dc.identifier.doi10.1016/j.renene.2019.09.145
dc.identifier.grantnumberEP/S001565/1en_GB
dc.identifier.grantnumberEP/J016942/1en_GB
dc.identifier.grantnumberEP/R006768/1en_GB
dc.identifier.grantnumberEP/R004900/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/39010
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights©2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/
dc.subjectWind Turbineen_GB
dc.subjectPower Curveen_GB
dc.subjectGaussian Processen_GB
dc.subjectHeteroscedasticen_GB
dc.subjectProbabilisticen_GB
dc.subjectBayesianen_GB
dc.titleProbabilistic Modelling of Wind Turbine Power Curves With Application of Heteroscedastic Gaussian Process Regressionen_GB
dc.typeArticleen_GB
dc.date.available2019-10-02T12:29:54Z
dc.identifier.issn0960-1481
dc.descriptionThis is the final version. Available on open access from Elsevier via the DOI in this recorden_GB
dc.identifier.journalRenewable Energyen_GB
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2019-09-30
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2019-09-30
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-10-02T10:38:14Z
refterms.versionFCDAM
refterms.dateFOA2019-10-18T15:28:18Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

©2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's licence is described as ©2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/