Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy
dc.contributor.author | Lopes, MA | |
dc.contributor.author | Junges, L | |
dc.contributor.author | Tait, L | |
dc.contributor.author | Terry, JR | |
dc.contributor.author | Abela, E | |
dc.contributor.author | Richardson, MP | |
dc.contributor.author | Goodfellow, M | |
dc.date.accessioned | 2019-11-22T10:10:53Z | |
dc.date.issued | 2019-11-22 | |
dc.description.abstract | Objective: The effectiveness of intracranial electroencephalography (iEEG) to inform epilepsy surgery depends on where iEEG electrodes are implanted. This decision is informed by noninvasive recording modalities such as scalp EEG. Herein we propose a framework to interrogate scalp EEG and determine epilepsy lateralization to aid in electrode implantation. Methods: We use eLORETA to map source activities from seizure epochs recorded from scalp EEG and consider 15 regions of interest (ROIs). Functional networks are then constructed using the phase-locking value and studied using a mathematical model. By removing different ROIs from the network and simulating their impact on the network’s ability to generate seizures in silico, the framework provides predictions of epilepsy lateralization. We consider 15 individuals from the EPILEPSIAE database and study a total of 62 seizures. Results were assessed by taking into account actual intracranial implantations and surgical outcome. Results: The framework provided potentially useful information regarding epilepsy lateralization in 12 out of the 15 individuals (p=0.02, binomial test). Conclusions: Our results show promise for the use of this framework to better interrogate scalp EEG to determine epilepsy lateralization. Significance: The framework may aid clinicians in the decision process to define where to implant electrodes for intracranial monitoring. | en_GB |
dc.description.sponsorship | Medical Research Council | en_GB |
dc.description.sponsorship | Epilepsy Research UK | en_GB |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC) | en_GB |
dc.description.sponsorship | Wellcome Trust | en_GB |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC) | en_GB |
dc.description.sponsorship | Innovate UK | en_GB |
dc.description.sponsorship | European Union’s Horizon 2020 | en_GB |
dc.description.sponsorship | Alzheimer's Society | en_GB |
dc.description.sponsorship | Medical Research Council | en_GB |
dc.identifier.citation | Published online 22 November 2019 | en_GB |
dc.identifier.doi | 10.1016/j.clinph.2019.10.027 | |
dc.identifier.grantnumber | MR/K013998/1 | en_GB |
dc.identifier.grantnumber | P1505 | en_GB |
dc.identifier.grantnumber | EP/N014391/1 | en_GB |
dc.identifier.grantnumber | WT105618MA | en_GB |
dc.identifier.grantnumber | EP/P021417/1 | en_GB |
dc.identifier.grantnumber | TS/R00546X/1 | en_GB |
dc.identifier.grantnumber | 75088 | en_GB |
dc.identifier.grantnumber | 231 | en_GB |
dc.identifier.grantnumber | MR/N026063/1 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/39723 | |
dc.language.iso | en | en_GB |
dc.publisher | Elsevier | en_GB |
dc.rights | © 2019. Open access under a Creative Commons licence: https://creativecommons.org/licenses/by/4.0/ | en_GB |
dc.subject | epilepsy surgery | en_GB |
dc.subject | source mapping | en_GB |
dc.subject | scalp EEG | en_GB |
dc.subject | neural mass model | en_GB |
dc.subject | epileptogenic zone | en_GB |
dc.subject | epilepsy lateralization | en_GB |
dc.title | Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2019-11-22T10:10:53Z | |
dc.identifier.issn | 1388-2457 | |
dc.description | This is the author accepted manuscript. The final version is available on open access from Elsevier via the DOI in this record | en_GB |
dc.identifier.journal | Clinical Neurophysiology | en_GB |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2019-10-27 | |
exeter.funder | ::Epilepsy Research UK | en_GB |
exeter.funder | ::Engineering and Physical Sciences Research Council (EPSRC) | en_GB |
exeter.funder | ::Engineering and Physical Sciences Research Council (EPSRC) | en_GB |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2019-10-27 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2019-11-21T12:11:48Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2019-11-29T14:20:28Z | |
refterms.panel | B | en_GB |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2019. Open access under a Creative Commons licence: https://creativecommons.org/licenses/by/4.0/