Show simple item record

dc.contributor.authorLopes, MA
dc.contributor.authorJunges, L
dc.contributor.authorTait, L
dc.contributor.authorTerry, JR
dc.contributor.authorAbela, E
dc.contributor.authorRichardson, MP
dc.contributor.authorGoodfellow, M
dc.date.accessioned2019-11-22T10:10:53Z
dc.date.issued2019-11-22
dc.description.abstractObjective: The effectiveness of intracranial electroencephalography (iEEG) to inform epilepsy surgery depends on where iEEG electrodes are implanted. This decision is informed by noninvasive recording modalities such as scalp EEG. Herein we propose a framework to interrogate scalp EEG and determine epilepsy lateralization to aid in electrode implantation. Methods: We use eLORETA to map source activities from seizure epochs recorded from scalp EEG and consider 15 regions of interest (ROIs). Functional networks are then constructed using the phase-locking value and studied using a mathematical model. By removing different ROIs from the network and simulating their impact on the network’s ability to generate seizures in silico, the framework provides predictions of epilepsy lateralization. We consider 15 individuals from the EPILEPSIAE database and study a total of 62 seizures. Results were assessed by taking into account actual intracranial implantations and surgical outcome. Results: The framework provided potentially useful information regarding epilepsy lateralization in 12 out of the 15 individuals (p=0.02, binomial test). Conclusions: Our results show promise for the use of this framework to better interrogate scalp EEG to determine epilepsy lateralization. Significance: The framework may aid clinicians in the decision process to define where to implant electrodes for intracranial monitoring.en_GB
dc.description.sponsorshipMedical Research Councilen_GB
dc.description.sponsorshipEpilepsy Research UKen_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipWellcome Trusten_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipInnovate UKen_GB
dc.description.sponsorshipEuropean Union’s Horizon 2020en_GB
dc.description.sponsorshipAlzheimer's Societyen_GB
dc.description.sponsorshipMedical Research Councilen_GB
dc.identifier.citationPublished online 22 November 2019en_GB
dc.identifier.doi10.1016/j.clinph.2019.10.027
dc.identifier.grantnumberMR/K013998/1en_GB
dc.identifier.grantnumberP1505en_GB
dc.identifier.grantnumberEP/N014391/1en_GB
dc.identifier.grantnumberWT105618MAen_GB
dc.identifier.grantnumberEP/P021417/1en_GB
dc.identifier.grantnumberTS/R00546X/1en_GB
dc.identifier.grantnumber75088en_GB
dc.identifier.grantnumber231en_GB
dc.identifier.grantnumberMR/N026063/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/39723
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2019. Open access under a Creative Commons licence: https://creativecommons.org/licenses/by/4.0/  en_GB
dc.subjectepilepsy surgeryen_GB
dc.subjectsource mappingen_GB
dc.subjectscalp EEGen_GB
dc.subjectneural mass modelen_GB
dc.subjectepileptogenic zoneen_GB
dc.subjectepilepsy lateralizationen_GB
dc.titleComputational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsyen_GB
dc.typeArticleen_GB
dc.date.available2019-11-22T10:10:53Z
dc.identifier.issn1388-2457
dc.descriptionThis is the author accepted manuscript. The final version is available on open access from Elsevier via the DOI in this recorden_GB
dc.identifier.journalClinical Neurophysiologyen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2019-10-27
exeter.funder::Epilepsy Research UKen_GB
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2019-10-27
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-11-21T12:11:48Z
refterms.versionFCDAM
refterms.dateFOA2019-11-29T14:20:28Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2019. Open access under a Creative Commons licence: https://creativecommons.org/licenses/by/4.0/  
Except where otherwise noted, this item's licence is described as © 2019. Open access under a Creative Commons licence: https://creativecommons.org/licenses/by/4.0/