Show simple item record

dc.contributor.authorYounis, MC
dc.contributor.authorKeedwell, E
dc.date.accessioned2019-11-28T13:05:28Z
dc.date.issued2019-11-18
dc.description.abstractSemantic segmentation is one of the most popular and challenging applications of deep learning. It refers to the process of dividing a digital image into semantically homogeneous areas with similar properties. We employ the use of deep learning techniques to perform semantic segmentation on high-resolution satellite images representing urban scenes to identify roads, vegetation, and buildings. A SegNet-based neural network with an encoder–decoder architecture is employed. Despite the small size of the dataset, the results are promising. We show that the network is able to accurately distinguish between these groups for different test images, when using a network with four convolutional layers.en_GB
dc.identifier.citationVol. 13 (4), article 046510en_GB
dc.identifier.doi10.1117/1.jrs.13.046510
dc.identifier.urihttp://hdl.handle.net/10871/39865
dc.language.isoenen_GB
dc.publisherSociety of Photo-optical Instrumentation Engineers (SPIE)en_GB
dc.rights© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)en_GB
dc.subjectImage segmentationen_GB
dc.subjectEarth observing sensorsen_GB
dc.subjectSatellite imagingen_GB
dc.subjectSatellitesen_GB
dc.subjectRoadsen_GB
dc.subjectBuildingsen_GB
dc.subjectVegetationen_GB
dc.subjectImage processingen_GB
dc.subjectNeural networksen_GB
dc.subjectImage classificationen_GB
dc.titleSemantic segmentation on small datasets of satellite images using convolutional neural networksen_GB
dc.typeArticleen_GB
dc.date.available2019-11-28T13:05:28Z
dc.identifier.issn1931-3195
dc.descriptionThis is the final version. Available from SPIE via the DOI in this recorden_GB
dc.identifier.journalJournal of Applied Remote Sensingen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2019-10-25
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2019-11-18
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-11-28T13:02:41Z
refterms.versionFCDVoR
refterms.dateFOA2019-11-28T13:05:39Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record