Show simple item record

dc.contributor.authorYates, J
dc.contributor.authorPalmer, P
dc.contributor.authorManners, J
dc.contributor.authorBoutle, I
dc.contributor.authorKohary, K
dc.contributor.authorMayne, N
dc.contributor.authorAbraham, L
dc.date.accessioned2020-01-06T09:56:56Z
dc.date.issued2020-01-08
dc.description.abstractWe use the Met Office Unified Model to explore the potential of a tidally locked M dwarf planet, nominally Proxima Centauri b irradiated by a quiescent version of its host star, to sustain an atmospheric ozone layer. We assume a slab ocean surface layer, and an Earth-like atmosphere of nitrogen and oxygen with trace amounts of ozone and water vapour. We describe ozone chemistry using the Chapman mechanism and the hydrogen oxide (HOx, describing the sum of OH and HO2) catalytic cycle. We find that Proxima Centauri radiates with sufficient UV energy to initialize the Chapman mechanism. The result is a thin but stable ozone layer that peaks at 0.75 parts per million at 25 km. The quasi-stationary distribution of atmospheric ozone is determined by photolysis driven by incoming stellar radiation and by atmospheric transport. Ozone mole fractions are smallest in the lowest 15 km of the atmosphere at the sub-stellar point and largest in the nightside gyres. Above 15 km the ozone distribution is dominated by an equatorial jet stream that circumnavigates the planet. The nightside ozone distribution is dominated by two cyclonic Rossby gyres that result in localized ozone hotspots. On the dayside the atmospheric lifetime is determined by the HOx catalytic cycle and deposition to the surface, with nightside lifetimes due to chemistry much longer than timescales associated with atmospheric transport. Surface UV values peak at the substellar point with values of 0.01 W/m2 , shielded by the overlying atmospheric ozone layer but more importantly by water vapour clouds.en_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.identifier.citationVol. 492 (2), pp. 1691–1705en_GB
dc.identifier.doi10.1093/mnras/stz3520
dc.identifier.grantnumberST/R000395/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/40241
dc.language.isoenen_GB
dc.publisherOxford University Press (OUP)en_GB
dc.subjectplanets and satellitesen_GB
dc.subjectatmospheresen_GB
dc.subjectterrestrial planetsen_GB
dc.subjectastrobiologyen_GB
dc.titleOzone chemistry on tidally locked M dwarf planetsen_GB
dc.typeArticleen_GB
dc.date.available2020-01-06T09:56:56Z
dc.identifier.issn0035-8711
dc.descriptionThis is the final version. Available from Oxford University Press via the DOI in this recorden_GB
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2019-12-10
exeter.funder::Leverhulme Trusten_GB
exeter.funder::Science and Technology Facilities Councilen_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2019-12-10
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-01-06T09:01:47Z
refterms.versionFCDAM
refterms.dateFOA2020-01-29T14:42:57Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record