Synchrony and symmetry-breaking in active flagellar coordination
dc.contributor.author | Wan, K | |
dc.date.accessioned | 2020-01-06T10:20:13Z | |
dc.date.issued | 2019-12-30 | |
dc.description.abstract | Living creatures exhibit a remarkable diversity of locomotion mechanisms, evolving structures specialized for interacting with their environment. In the vast majority of cases, locomotor behaviours such as flying, crawling and running are orchestrated by nervous systems. Surprisingly, microorganisms can enact analogous movement gaits for swimming using multiple, fast-moving cellular protrusions called cilia and flagella. Here, I demonstrate intermittency, reversible rhythmogenesis and gait mechanosensitivity in algal flagella, to reveal the active nature of locomotor patterning. In addition to maintaining free-swimming gaits, I show that the algal flagellar apparatus functions as a central pattern generator that encodes the beating of each flagellum in a network in a distinguishable manner. The latter provides a novel symmetry-breaking mechanism for cell reorientation. These findings imply that the capacity to generate and coordinate complex locomotor patterns does not require neural circuitry but rather the minimal ingredients are present in simple unicellular organisms. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’. | en_GB |
dc.identifier.citation | Published online 30 December 2019 | en_GB |
dc.identifier.doi | 10.1098/rstb.2019.0393 | |
dc.identifier.uri | http://hdl.handle.net/10871/40242 | |
dc.language.iso | en | en_GB |
dc.publisher | Royal Society | en_GB |
dc.relation.url | https://arxiv.org/abs/1911.00863 | en_GB |
dc.rights | © 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. | en_GB |
dc.subject | cilia coordination | en_GB |
dc.subject | basal coupling | en_GB |
dc.subject | locomotion | en_GB |
dc.subject | central pattern generator oscillations | en_GB |
dc.subject | mechanosensitivity | en_GB |
dc.title | Synchrony and symmetry-breaking in active flagellar coordination | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2020-01-06T10:20:13Z | |
dc.identifier.issn | 0962-8436 | |
dc.description | This is the final version. Available from the publisher via the DOI in this record. | en_GB |
dc.description | Please refer to the electronic supplementary material for videos S1-10, and supplementary text file for more information. Additional datasets are available at https://doi.org/10.5281/ zenodo.3551942. | en_GB |
dc.identifier.journal | Philosophical Transactions B: Biological Sciences | en_GB |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2019-11-02 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2019-12-30 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2020-01-06T10:17:28Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2020-01-06T10:20:19Z | |
refterms.panel | B | en_GB |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2020 The Authors.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.