Show simple item record

dc.contributor.authorBailey, M
dc.contributor.authorCorrea, N
dc.contributor.authorHarding, S
dc.contributor.authorStone, N
dc.contributor.authorBrasselet, S
dc.contributor.authorPalombo, F
dc.date.accessioned2020-02-10T10:23:38Z
dc.date.issued2020-02-08
dc.description.abstractBrillouin spectroscopy, based on the inelastic scattering of light from thermally driven acoustic waves or phonons [1], holds great promise in the field of life sciences as it provides functionally relevant micromechanical information in a contactless all-optical manner [2]. Due to the complexity of biological systems such as cells and tissues, which present spatio-temporal heterogeneities, interpretation of Brillouin spectra can be difficult. The data presented here were collected from gelatin hydrogels, used as tissue-mimicking model systems for Brillouin microspectroscopy measurements conducted using a lab-built Brillouin microscope with a dual-stage VIPA spectrometer. By varying the solute concentration in the range 4 to 18% (w/w), the macroscopic mechanical properties of the hydrogels can be tuned and the corresponding evolution in the Brillouin-derived longitudinal elastic modulus measured. An increase in Brillouin frequency shift with increasing solute concentration was observed, which was found to correlate with an increase in acoustic wave velocity and longitudinal modulus. The gels used here provide a viable model system for benchmarking and standardisation, and the data will be useful for spectrometer development and validation.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipCancer Research UKen_GB
dc.identifier.citationArticle 105267en_GB
dc.identifier.doi10.1016/j.dib.2020.105267
dc.identifier.grantnumberEP/M028739/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/40796
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.relation.urlhttps://doi.org/10.24378/exe.2144en_GB
dc.rights© Elsevier 2020. This version is made available under the CC-BY-NC-ND 4.0 licenseen_GB
dc.subjectBrillouin scatteringen_GB
dc.subjectPhononsen_GB
dc.subjectBiopolymersen_GB
dc.subjectTissue phantomsen_GB
dc.subjectCollagenen_GB
dc.subjectBiomechanicsen_GB
dc.titleBrillouin microspectroscopy data of tissue-mimicking gelatin hydrogelsen_GB
dc.typeArticleen_GB
dc.date.available2020-02-10T10:23:38Z
dc.identifier.issn2352-3409
exeter.article-number105267en_GB
dc.descriptionThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this recorden_GB
dc.descriptionData identification number: 10.24378/exe.2144 Direct URL to data: https://doi.org/10.24378/exe.2144en_GB
dc.identifier.journalData in Briefen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/ en_GB
dcterms.dateAccepted2020-02-03
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
exeter.funder::Cancer Research UKen_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-02-08
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-02-10T10:08:49Z
refterms.versionFCDAM
refterms.dateFOA2020-02-10T10:23:42Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Elsevier 2020. This version is made available under the CC-BY-NC-ND 4.0 license
Except where otherwise noted, this item's licence is described as © Elsevier 2020. This version is made available under the CC-BY-NC-ND 4.0 license