Show simple item record

dc.contributor.authorByott, Nigel P.
dc.contributor.authorChilds, Lindsay N.
dc.date.accessioned2013-04-19T15:57:02Z
dc.date.issued2012-10-06
dc.description.abstractGiven finite groups Γ and G of order n, regular embeddings from Γ to the holomorph of G yield Hopf-Galois structures on a Galois extension L|K of fields with Galois group Γ. Here we consider regular embeddings that arise from fixed-point free pairs of homomorphisms from Γ to G. If G is a complete group, then all regular embeddings arise from fixed-point free pairs. For all Γ, G of order n = p(p-1) with p a safeprime, we compute the number of Hopf-Galois structures that arise from fixed-point free pairs, and compare the results with a count of all Hopf-Galois structures obtained by T. Kohl. Using the idea of fixed-point free pairs, we characterize the abelian Galois groups Γ of even order or order a power of p, an odd prime, for which L|K admits a nonabelian Hopf Galois structure. The paper concludes with some new classes of abelian groups Γ for which every Hopf-Galois structure has type Γ (and hence is abelian).en_GB
dc.identifier.citationVol. 18, pp. 707 - 731en_GB
dc.identifier.urihttp://hdl.handle.net/10871/8384
dc.language.isoenen_GB
dc.publisherUniversity at Albanyen_GB
dc.relation.urlhttp://nyjm.albany.edu/j/2012/18-38.htmlen_GB
dc.subjectHopf-Galois structureen_GB
dc.subjectabelian extensionsen_GB
dc.subjectsemidirect producten_GB
dc.titleFixed-point free pairs of homomorphisms and nonabelian Hopf-Galois structureen_GB
dc.typeArticleen_GB
dc.date.available2013-04-19T15:57:02Z
dc.identifier.eissn1076-9803
dc.identifier.journalNew York Journal of Mathematicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record