Dynamics of two laterally coupled semiconductor lasers: strong- and weak-coupling theory
Erzgraber, H.; Wieczorek, Sebastian; Krauskopf, Bernd
Date: 1 December 2008
Article
Journal
Physical Review E - Statistical, Nonlinear and Soft Matter Physics
Publisher
American Physical Society
Publisher DOI
Abstract
The stability and nonlinear dynamics of two semiconductor lasers coupled side to side via evanescent waves are investigated by using three different models. In the composite-cavity model, the coupling between the lasers is accurately taken into account by calculating electric field profiles (composite-cavity modes) of the whole ...
The stability and nonlinear dynamics of two semiconductor lasers coupled side to side via evanescent waves are investigated by using three different models. In the composite-cavity model, the coupling between the lasers is accurately taken into account by calculating electric field profiles (composite-cavity modes) of the whole coupled-laser system. A bifurcation analysis of the composite-cavity model uncovers how different types of dynamics, including stationary phase-locking, periodic, quasiperiodic, and chaotic intensity oscillations, are organized. In the individual-laser model, the coupling between individual lasers is introduced phenomenologically with ad hoc coupling terms. Comparison with the composite-cavity model reveals drastic differences in the dynamics. To identify the causes of these differences, we derive a coupled-laser model with coupling terms which are consistent with the solution of the wave equation and the relevant boundary conditions. This coupled-laser model reproduces the dynamics of the composite-cavity model under weak-coupling conditions.
Mathematics and Statistics
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0