Show simple item record

dc.contributor.authorWieczorek, Sebastian
dc.contributor.authorAshwin, Peter
dc.contributor.authorLuke, Catherine M.
dc.contributor.authorCox, Peter M.
dc.date.accessioned2013-05-15T13:12:14Z
dc.date.issued2010-11-24
dc.description.abstractThe paper studies a novel excitability type where a large excitable response appears when a system’s parameter is varied gradually, or ramped, above some critical rate. This occurs even though there is a (unique) stable quiescent state for any fixed setting of the ramped parameter. We give a necessary and a sufficient condition for the existence of a critical ramping rate in a general class of slow–fast systems with folded slow (critical) manifold. Additionally, we derive an analytical condition for the critical rate by relating the excitability threshold to a canard trajectory through a folded saddle singularity. The general framework is used to explain a potential climate tipping point termed the ‘compost-bomb instability’—an explosive release of soil carbon from peatlands into the atmosphere occurs above some critical rate of global warming even though there is a unique asymptotically stable soil carbon equilibrium for any fixed atmospheric temperature.en_GB
dc.identifier.citationVol. 467 (2129), pp. 1243-1269en_GB
dc.identifier.doi10.1098/rspa.2010.0485
dc.identifier.urihttp://hdl.handle.net/10871/9407
dc.language.isoenen_GB
dc.publisherRoyal Societyen_GB
dc.subjectexcitabilityen_GB
dc.subjectsingular perturbation theoryen_GB
dc.subjectclimate tipping pointsen_GB
dc.subjectsoil carbonen_GB
dc.subjectfolded saddleen_GB
dc.subjectnon-autonomous systemsen_GB
dc.titleExcitability in ramped systems: the compost-bomb instabilityen_GB
dc.typeArticleen_GB
dc.date.available2013-05-15T13:12:14Z
dc.identifier.issn1364-5021
dc.descriptionCopyright © 2010 The Royal Societyen_GB
dc.identifier.eissn1471-2946
dc.identifier.journalProceedings A: Mathematical, Physical and Engineering Sciencesen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record