Show simple item record

dc.contributor.authorBaraffe, I.
dc.contributor.authorChabrier, G.
dc.contributor.authorBarman, T.
dc.date.accessioned2013-06-07T14:44:27Z
dc.date.issued2008
dc.description.abstractAims. We examine the uncertainties in current planetary models and quantify their impact on the planet cooling histories and mass-radius relationships.Methods. These uncertainties include (i) the differences between the various equations of state used to characterize the heavy material thermodynamical properties, (ii) the distribution of heavy elements within planetary interiors, (iii) their chemical composition, and (iv) their thermal contribution to the planet evolution. Our models, which include a gaseous H/He envelope, are compared with models of solid, gasless Earth-like planets in order to examine the impact of a gaseous envelope on the cooling and the resulting radius.Results. We find that, for a fraction of heavy material larger than 20% of the planet mass, the distribution of the heavy elements in the planet's interior substantially affects the evolution and thus the radius at a given age. For planets with large core mass fractions (greater than or similar to 50%), such as the Neptune-mass transiting planet GJ 436b, the contribution of the gravitational and thermal energy from the core to the planet cooling history is not negligible, yielding a similar to 10% effect on the radius after 1 Gyr. We show that the present mass and radius determinations of the massive planet Hat-P-2b require at least 200 M-circle plus of heavy material in the interior, at the edge of what is currently predicted by the core-accretion model for planet formation. As an alternative avenue for massive planet formation, we suggest that this planet, and similarly HD 17156b, may have formed from collisions between one or several other massive planets. This would explain these planets unusually high density and high eccentricity. We show that if planets as massive as similar to 25 M-J can form, as predicted by improved core-accretion models, deuterium is able to burn in the H/He layers above the core, even for core masses as high as similar to 100 M-circle plus. Such a result highlights the confusion provided by a definition of a planet based on the deuterium-burning limit.Conclusions. We provide extensive grids of planetary evolution models from 10 M-circle plus to 10 M-Jup, with various fractions of heavy elements. These models provide a reference for analyzing the transit discoveries expected from the CoRoT and Kepler missions and for inferring the internal composition of these objects.en_GB
dc.identifier.citationVol. 482 (1), pp. 315 - 332en_GB
dc.identifier.doi10.1051/0004-6361:20079321
dc.identifier.urihttp://hdl.handle.net/10871/9911
dc.language.isoenen_GB
dc.publisherEDP Sciencesen_GB
dc.relation.urlhttp://dx.doi.org/10.1051/0004-6361:20079321en_GB
dc.subjectstars : planetary systemsen_GB
dc.subjectstars : individual : GJ 436en_GB
dc.subjectstars : individual : Hat-P-2en_GB
dc.subjectstars : individual : HD149026en_GB
dc.subjectextrasolar giant planetsen_GB
dc.subjectbrown dwarfsen_GB
dc.subjectirradiated planetsen_GB
dc.subjecttransiting planeten_GB
dc.subjectocean planetsen_GB
dc.subjectHD 149026Ben_GB
dc.subjectmassen_GB
dc.subjectmodelsen_GB
dc.subjectNeptuneen_GB
dc.subjectSaturnen_GB
dc.titleStructure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interioren_GB
dc.typeArticleen_GB
dc.date.available2013-06-07T14:44:27Z
dc.identifier.issn0004-6361
dc.descriptionCopyright © 2008 EDP Sciencesen_GB
dc.identifier.eissn1432-0746
dc.identifier.journalAstronomy and Astrophysicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record