Show simple item record

dc.contributor.authorDavidson, Jamesen_GB
dc.contributor.authorHashimzade, Nigaren_GB
dc.date.accessioned2013-02-05T15:18:35Zen_GB
dc.date.accessioned2013-03-19T15:50:14Z
dc.date.issued2009en_GB
dc.description.abstractThis paper considers the asymptotic distribution of the sample covariance of a nonstationary fractionally integrated process with the stationary increments of another such process .possibly, itself. Questions of interest include the relationship between the harmonic representation of these random variables, which we have analysed in a previous paper, and the construction derived from moving average representations in the time domain. Depending on the values of the long memory parameters and choice of normalization, the limiting integral is shown to be expressible as the sum of a constant and two Itô-type integrals with respect to distinct Brownian motions. In certain cases the latter terms are of small order relative to the former. The mean is shown to match that of the harmonic representation, where the latter is defined, and satisfies the required integration by parts rule. The advantages of our approach over the harmonic analysis include the facts that our formulae are valid for the full range of the long memory parameters, and extend to non-Gaussian processes.en_GB
dc.identifier.citationVol. 25, Issue 6, pp. 1589 - 1624en_GB
dc.identifier.doi10.1017/S0266466609990260en_GB
dc.identifier.urihttp://hdl.handle.net/10036/4271en_GB
dc.language.isoenen_GB
dc.publisherCambridge University Pressen_GB
dc.relation.urlhttp://people.ex.ac.uk/jehd201/en_GB
dc.relation.urlhttp://journals.cambridge.org/action/displayJournal?jid=ECTen_GB
dc.subjectStochastic integralen_GB
dc.subjectweak convergenceen_GB
dc.subjectfractional Brownian motionen_GB
dc.titleRepresentation and weak convergence of stochastic integrals with fractional integrator processesen_GB
dc.typeArticleen_GB
dc.date.available2013-02-05T15:18:35Zen_GB
dc.date.available2013-03-19T15:50:14Z
dc.identifier.issn0266-4666en_GB
dc.descriptionAuthor's pre-print draft dated September 2008. Final version published by Cambridge University Press; available online at http://journals.cambridge.org/en_GB
dc.identifier.eissn1469-4360en_GB
dc.identifier.journalEconometric Theoryen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record