Show simple item record

dc.contributor.authorLewis, K
dc.date.accessioned2020-06-09T12:10:51Z
dc.date.issued2020-06-01
dc.description.abstractThe recent rapid expansion of oil palm (OP, Elaeis guineensis) plantations into tropical forest peatlands has resulted in net ecosystem carbon emissions. However, quantifications of the net carbon flux from biomass changes require accurate estimates of the above ground biomass (AGB) accumulation rate of OP on peat in working plantations. Current efforts that aim to reduce the emissions from OP expansion would also benefit from the development of economically viable remote sensing approaches that enable the detection of OP plantation expansion and monitoring of AGB stocks across at a fine spatial and temporal resolution. Here, destructive harvest and non-destructive plot inventories are conducted across a chronosequence of OP planting blocks (3 to 12 years after planting (YAP)) in plantations on drained peat in Sarawak, Malaysia. The effectiveness of using a timeseries of L-band synthetic aperture radar (SAR) scenes (ALOS PALSAR-1/2) and a novel ‘biomass matching’ approach to detect, quantify and map the AGB stock changes associated with OP establishment and growth was then assessed. Peat specific allometric equations for palm (9 palms, R2 = 0.92) and frond biomass are developed and upscaled to estimate AGB at the plantation block-level (902 palms). Aboveground biomass stocks on peat accumulated at ~6.39 ± 1.12 Mg ha-1 per year in the first 12 years after planting. However, high inter-palm and inter-block AGB variability was observed in mature classes as a result of variations in palm leaning and mortality. The ‘biomass matching’ approach detected statistically significant deforestation associated with OP establishment. OP growth was well estimated between 4 and 10 YAP, however sensitivity to increases in AGB was lost at ~ 45 - 60 Mg ha. Validation of the allometric equations defined and expansion of non-destructive inventories across alternative plantations and age classes on peat would further strengthen our understanding of OP AGB accumulation rates. With further investigation into the relationship between OP structural characteristics and L-band radar cross section (RCS) in the HV and HH polarisations, ‘biomass matching’ could be a feasible tool for monitoring AGB stock changes to inform carbon emission mitigation strategies.en_GB
dc.identifier.urihttp://hdl.handle.net/10871/121338
dc.publisherUniversity of Exeteren_GB
dc.titleQuantifying the aboveground biomass stock changes associated with oil palm expansion on tropical peatlands using plot-based methods and L-band radaren_GB
dc.typeThesis or dissertationen_GB
dc.date.available2020-06-09T12:10:51Z
dc.contributor.advisorHill, Ten_GB
dc.contributor.advisorGallego-Sala, Aen_GB
dc.publisher.departmentGeographyen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dc.type.degreetitleMSc by Researchen_GB
dc.type.qualificationlevelMastersen_GB
dc.type.qualificationnameMbyRes Dissertationen_GB
rioxxterms.versionNAen_GB
rioxxterms.licenseref.startdate2020-06-02
rioxxterms.typeThesisen_GB
refterms.dateFOA2020-06-09T12:10:54Z


Files in this item

This item appears in the following Collection(s)

Show simple item record