Show simple item record

dc.contributor.authorIreland, LG
dc.contributor.authorZanni, C
dc.contributor.authorMatt, SP
dc.contributor.authorPantolmos, G
dc.date.accessioned2021-06-22T06:06:57Z
dc.date.issued2020-12-29
dc.description.abstractThe rotational evolution of an accreting pre-main-sequence star is influenced by its magnetic interaction with its surrounding circumstellar disk. Using the PLUTO code, we perform 2.5D magnetohydrodynamic, axisymmetric, time-dependent simulations of star-disk interaction - with an initial dipolar magnetic field structure, and a viscous and resistive accretion disk - in order to model the three mechanisms that contribute to the net stellar torque: accretion flow, stellar wind, and magnetospheric ejections (periodic inflation and reconnection events). We investigate how changes in the stellar magnetic field strength, rotation rate, and mass accretion rate (changing the initial disk density) affect the net stellar torque. All simulations are in a net spin-up regime. We fit semi-analytic functions for the three stellar torque contributions, allowing for the prediction of the net stellar torque for our parameter regime, as well as the possibility of investigating spin evolution using 1D stellar evolution codes. The presence of an accretion disk appears to increase the efficiency of stellar torques compared to isolated stars, for cases with outflow rates much smaller than accretion rates, because the star-disk interaction opens more of the stellar magnetic flux compared to that from isolated stars. In our parameter regime, a stellar wind with a mass-loss rate of ≈1% of the mass accretion rate is capable of extracting ≲50% of the accreting angular momentum. These simulations suggest that achieving spin equilibrium in a representative T Tauri case within our parameter regime, e.g., BP Tau, would require a wind mass-loss rate of ≈25% of the mass accretion rate.en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.identifier.citationVol. 906 (1), article 4en_GB
dc.identifier.doi10.3847/1538-4357/abc828
dc.identifier.grantnumber682393en_GB
dc.identifier.urihttp://hdl.handle.net/10871/126129
dc.language.isoenen_GB
dc.publisherAmerican Astronomical Society / IOP Publishingen_GB
dc.rights.embargoreasonPublisher policy.en_GB
dc.rights© 2020. The American Astronomical Society. All rights reserved.en_GB
dc.subjectStellar windsen_GB
dc.subjectStellar evolutionen_GB
dc.subjectStellar magnetic fieldsen_GB
dc.subjectStellar rotationen_GB
dc.subjectMagnetohydrodynamical simulationsen_GB
dc.subjectPre-main sequence starsen_GB
dc.subjectStellar accretionen_GB
dc.subjectClassical T Tauri starsen_GB
dc.subjectStellar accretion disksen_GB
dc.titleMagnetic Braking of Accreting T Tauri Stars: Effects of Mass Accretion Rate, Rotation, and Dipolar Field Strengthen_GB
dc.typeArticleen_GB
dc.date.available2021-06-22T06:06:57Z
dc.identifier.issn0004-637X
dc.descriptionThis is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this recorden_GB
dc.identifier.journalAstrophysical Journalen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-11-04
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-12-29
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-01-28T12:55:54Z
refterms.versionFCDAM
refterms.dateFOA2021-06-22T06:07:10Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record