Show simple item record

dc.contributor.authorBreitung, J
dc.contributor.authorKripfganz, S
dc.contributor.authorHayakawa, K
dc.date.accessioned2021-07-23T14:26:20Z
dc.date.issued2021-07-22
dc.description.abstractA computationally simple bias correction for linear dynamic panel data models is proposed and its asymptotic properties are studied when the number of time periods is fixed or tends to infinity with the number of panel units. The approach can accommodate both fixed-effects and random-effects assumptions, heteroskedastic errors, as well as higher-order autoregressive models. Panel corrected standard errors are proposed that allow for robust inference in dynamic models with cross-sectionally correlated errors. Monte Carlo experiments suggest that under the assumption of strictly exogenous regressors the bias corrected method of moment estimator outperforms popular GMM estimators in terms of efficiency and correctly sized tests.en_GB
dc.identifier.citationPublished online 22 July 2021en_GB
dc.identifier.doi10.1016/j.ecosta.2021.07.001
dc.identifier.urihttp://hdl.handle.net/10871/126514
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 22 July 2022 in compliance with publisher policyen_GB
dc.rights© 2021. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectBias correctionen_GB
dc.subjectMoment conditionsen_GB
dc.subjectAutoregressive modelen_GB
dc.subjectPanel dataen_GB
dc.subjectFixed effectsen_GB
dc.subjectRandom Effectsen_GB
dc.titleBias-corrected method of moments estimators for dynamic panel data modelsen_GB
dc.typeArticleen_GB
dc.date.available2021-07-23T14:26:20Z
dc.identifier.issn2452-3062
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.identifier.journalEconometrics and Statisticsen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/ en_GB
dcterms.dateAccepted2021-07-13
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-07-22
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-07-23T14:18:12Z
refterms.versionFCDAM
refterms.dateFOA2022-07-21T23:00:00Z
refterms.panelCen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2021. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2021. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/