Bootstrap Inference in the Presence of Bias
dc.contributor.author | Cavaliere, G | |
dc.contributor.author | Gonçalves, S | |
dc.contributor.author | Nielsen, MØ | |
dc.contributor.author | Zanelli, E | |
dc.date.accessioned | 2023-11-30T11:57:47Z | |
dc.date.issued | 2023-11-17 | |
dc.date.updated | 2023-11-30T11:02:53Z | |
dc.description.abstract | We consider bootstrap inference for estimators which are (asymptotically) biased. We show that, even when the bias term cannot be consistently estimated, valid inference can be obtained by proper implementations of the bootstrap. Specifically, we show that the prepivoting approach of Beran (1987, 1988), originally proposed to deliver higher-order refinements, restores bootstrap validity by transforming the original bootstrap p-value into an asymptotically uniform random variable. We propose two different implementations of prepivoting (plug-in and double bootstrap), and provide general high-level conditions that imply validity of bootstrap inference. To illustrate the practical relevance and implementation of our results, we discuss five examples: (i) inference on a target parameter based on model averaging; (ii) ridge-type regularized estimators; (iii) nonparametric regression; (iv) a location model for infinite variance data; and (v) dynamic panel data models. | en_GB |
dc.description.sponsorship | Italian Ministry of University and Research | en_GB |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada (NSERC) | en_GB |
dc.description.sponsorship | Danish National Research Foundation | en_GB |
dc.identifier.citation | Published online 17 November 2023 | en_GB |
dc.identifier.doi | https://doi.org/10.1080/01621459.2023.2284980 | |
dc.identifier.grantnumber | 2017TA7TYC | en_GB |
dc.identifier.grantnumber | RGPIN-2021-02663 | en_GB |
dc.identifier.grantnumber | DNRF154 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/134698 | |
dc.identifier | ORCID: 0000-0002-2856-0005 (Cavaliere, Giuseppe) | |
dc.language.iso | en | en_GB |
dc.publisher | Taylor & Francis / American Statistical Association | en_GB |
dc.rights.embargoreason | Under embargo until 17 November 2023 in compliance with publisher policy | en_GB |
dc.rights | © 2023. This version is made available under the CC-BY-NC 4.0 license: https://creativecommons.org/licenses/by-nc/4.0/ | en_GB |
dc.subject | Asymptotic bias | en_GB |
dc.subject | bootstrap | en_GB |
dc.subject | incidental parameter bias | en_GB |
dc.subject | model averaging | en_GB |
dc.subject | nonparametric regression | en_GB |
dc.subject | prepivoting | en_GB |
dc.title | Bootstrap Inference in the Presence of Bias | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2023-11-30T11:57:47Z | |
dc.identifier.issn | 0162-1459 | |
dc.description | This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this record | en_GB |
dc.identifier.eissn | 1537-274X | |
dc.identifier.journal | Journal of the American Statistical Association | en_GB |
dc.relation.ispartof | Journal of the American Statistical Association | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | en_GB |
dcterms.dateAccepted | 2023-11-10 | |
rioxxterms.version | AM | en_GB |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2023-11-30T11:49:31Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2024-11-17T00:00:00Z | |
refterms.panel | C | en_GB |
refterms.dateFirstOnline | 2023-11-17 |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2023. This version is made available under the CC-BY-NC 4.0 license: https://creativecommons.org/licenses/by-nc/4.0/