Show simple item record

dc.contributor.authorCavaliere, G
dc.contributor.authorGeorgiev, I
dc.contributor.authorZanelli, E
dc.date.accessioned2024-11-11T10:52:04Z
dc.date.issued2025-02-21
dc.date.updated2024-11-10T16:20:05Z
dc.description.abstractWe consider bootstrap inference in predictive (or Granger-causality) regressions when the parameter of interest may lie on the boundary of the parameter space, here defined by means of a smooth inequality constraint. For instance, this situation occurs when the definition of the parameter space allows for the cases of either no predictability or sign-restricted predictability. We show that in this context constrained estimation gives rise to bootstrap statistics whose limit distribution is, in general, random, and thus distinct from the limit null distribution of the original statistics of interest. This is due to both (i) the possible location of the true parameter vector on the boundary of the parameter space, and (ii) the possible non-stationarity of the posited predicting (resp. Granger-causing) variable. We discuss a modification of the standard fixed-regressor wild bootstrap scheme where the bootstrap parameter space is shifted by a data-dependent function in order to eliminate the portion of limiting bootstrap randomness attributable to the boundary, and prove validity of the associated bootstrap inference under non-stationarity of the predicting variable as the only remaining source of limiting bootstrap randomness. Our approach, which is initially presented in a simple location model, has bearing on inference in parameter-on-the-boundary situations beyond the predictive regression problem.en_GB
dc.description.sponsorshipItalian Ministry of University and Researchen_GB
dc.identifier.citationPublished online 21 February 2025en_GB
dc.identifier.doihttps://doi.org/10.1017/S0266466624000331
dc.identifier.grantnumber2020B2AKFWen_GB
dc.identifier.urihttp://hdl.handle.net/10871/138114
dc.identifierORCID: 0000-0002-2856-0005 (Cavaliere, Giuseppe)
dc.language.isoenen_GB
dc.publisherCambridge University Pressen_GB
dc.rights© The Author(s), 2025. Published by Cambridge University Press. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dc.subjectParameter on the boundaryen_GB
dc.subjectRandom measuresen_GB
dc.subjectweak convergence in distributionen_GB
dc.subjectasymptotic inferenceen_GB
dc.subjectuniform inferenceen_GB
dc.titleParameters on the boundary in predictive regressionen_GB
dc.typeArticleen_GB
dc.date.available2024-11-11T10:52:04Z
dc.identifier.issn0266-4666
dc.descriptionThis is the author accepted manuscript. The final version is available from Cambridge University Press via the DOI in this recorden_GB
dc.identifier.eissn1469-4360
dc.identifier.journalEconometric Theoryen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dcterms.dateAccepted2024-08-27
dcterms.dateSubmitted2022-05-03
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-08-27
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-11-10T16:20:07Z
refterms.versionFCDAM
refterms.dateFOA2025-04-11T09:40:09Z
refterms.panelCen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© The Author(s), 2025. Published by Cambridge University Press. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's licence is described as © The Author(s), 2025. Published by Cambridge University Press. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0/