Show simple item record

dc.contributor.authorChiu, Wing Sin
dc.contributor.authorBelsey, Natalie A.
dc.contributor.authorGarrett, Natalie
dc.contributor.authorMoger, Julian
dc.contributor.authorDelgado-Charro, M. Begoña
dc.contributor.authorGuy, Richard H.
dc.date.accessioned2015-10-05T13:14:51Z
dc.date.issued2015-06-23
dc.description.abstractThe effective treatment of diseases of the nail remains an important unmet medical need, primarily because of poor drug delivery. To address this challenge, the diffusion, in real time, of topically applied chemicals into the human nail has been visualized and characterized using stimulated Raman scattering (SRS) microscopy. Deuterated water (D2O), propylene glycol (PG-d8), and dimethyl sulphoxide (DMSO-d6) were separately applied to the dorsal surface of human nail samples. SRS microscopy was used to image D2O, PG-d8/DMSO-d6, and the nail through the O-D, -CD2, and -CH2 bond stretching Raman signals, respectively. Signal intensities obtained were measured as functions of time and of depth into the nail. It was observed that the diffusion of D2O was more than an order of magnitude faster than that of PG-d8 and DMSO-d6. Normalization of the Raman signals, to correct in part for scattering and absorption, permitted semiquantitative analysis of the permeation profiles and strongly suggested that solvent diffusion diverged from classical behavior and that derived diffusivities may be concentration dependent. It appeared that the uptake of solvent progressively undermined the integrity of the nail. This previously unreported application of SRS has permitted, therefore, direct visualization and semiquantitation of solvent penetration into the human nail. The kinetics of uptake of the three chemicals studied demonstrated that each altered its own diffusion in the nail in an apparently concentration-dependent fashion. The scale of the unexpected behavior observed may prove beneficial in the design and optimization of drug formulations to treat recalcitrant nail disease.en_GB
dc.identifier.citationVol. 112, pp. 7725 - 7730en_GB
dc.identifier.doi10.1073/pnas.1503791112
dc.identifier.other1503791112
dc.identifier.urihttp://hdl.handle.net/10871/18367
dc.language.isoenen_GB
dc.publisherPNASen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/26056283en_GB
dc.relation.urlhttp://www.pnas.org/en_GB
dc.subjectchemical diffusionen_GB
dc.subjectimagingen_GB
dc.subjectnail plateen_GB
dc.subjectstimulated Raman scattering microscopyen_GB
dc.titleMolecular diffusion in the human nail measured by stimulated Raman scattering microscopy.en_GB
dc.typeArticleen_GB
dc.date.available2015-10-05T13:14:51Z
exeter.place-of-publicationUnited States
dc.descriptionJournal Articleen_GB
dc.descriptionResearch Support, Non-U.S. Gov'ten_GB
dc.descriptionauthors' post-print versionen_GB
dc.identifier.eissn1091-6490
dc.identifier.journalProceedings of the National Academy of Sciencesen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record