Show simple item record

dc.contributor.authorCleeves, L. Ilsedore
dc.contributor.authorBergin, Edwin A.
dc.contributor.authorAlexander, Conel M. O’D.
dc.contributor.authorDu, Fujun
dc.contributor.authorGraninger, Dawn
dc.contributor.authorOberg, Karin I.
dc.contributor.authorHarries, Tim J.
dc.date.accessioned2016-02-02T14:24:38Z
dc.date.issued2016-02-23
dc.description.abstractDeuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies have generally higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this di erence arises at least in part due to 1) the availability of additional chemical fractionation pathways for organics beyond that for water, and 2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic ray ionization rate, and nd that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH2D+/CH+ 3 . We also nd that the D/H ratio in individual species varies signi cantly depending on their particular formation pathways. For example, from 20 40 AU, CH4 can reach D=H 2 10 3, while D/H in CH3OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.en_GB
dc.description.sponsorshipNSFen_GB
dc.description.sponsorshipRackham Predoctoral Fellowshipen_GB
dc.description.sponsorshipNASAen_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipSimons Collaboration on the Origins of Life (SCOL)en_GB
dc.identifier.citationVol. 819 (1), article 13en_GB
dc.identifier.doi10.3847/0004-637X/819/1/13
dc.identifier.grantnumberAST-1008800en_GB
dc.identifier.grantnumberNNX14AJ54Gen_GB
dc.identifier.grantnumberNNX12A193Gen_GB
dc.identifier.grantnumberST/M00127X/1en_GB
dc.identifier.grantnumberHST-HF2-51356.001-Aen_GB
dc.identifier.urihttp://hdl.handle.net/10871/19533
dc.language.isoenen_GB
dc.publisherAmerican Astronomical Societyen_GB
dc.rights© 2016. The American Astronomical Society. All rights reserved.
dc.titleExploring the origins of deuterium enrichments in solar nebular organicsen_GB
dc.typeArticleen_GB
dc.identifier.issn0004-637X
dc.identifier.journalAstrophysical Journalen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record