Show simple item record

dc.contributor.authorLe Quéré, C
dc.contributor.authorPeters, GP
dc.contributor.authorAndres, RJ
dc.contributor.authorAndrew, RM
dc.contributor.authorBoden, TA
dc.contributor.authorCiais, P
dc.contributor.authorFriedlingstein, P
dc.contributor.authorHoughton, RA
dc.contributor.authorMarland, G
dc.contributor.authorMoriarty, R
dc.contributor.authorSitch, S
dc.contributor.authorTans, P
dc.contributor.authorArneth, A
dc.contributor.authorArvanitis, A
dc.contributor.authorBakker, DCE
dc.contributor.authorBopp, L
dc.contributor.authorCanadell, JG
dc.contributor.authorChini, LP
dc.contributor.authorDoney, SC
dc.contributor.authorHarper, A
dc.contributor.authorHarris, I
dc.contributor.authorHouse, JI
dc.contributor.authorJain, AK
dc.contributor.authorJones, SD
dc.contributor.authorKato, E
dc.contributor.authorKeeling, RF
dc.contributor.authorKlein Goldewijk, K
dc.contributor.authorKörtzinger, A
dc.contributor.authorKoven, C
dc.contributor.authorLefèvre, N
dc.contributor.authorMaignan, F
dc.contributor.authorOmar, A
dc.contributor.authorOno, T
dc.contributor.authorPark, G-H
dc.contributor.authorPfeil, B
dc.contributor.authorPoulter, B
dc.contributor.authorRaupach, MR
dc.contributor.authorRegnier, P
dc.contributor.authorRödenbeck, C
dc.contributor.authorSaito, S
dc.contributor.authorSchwinger, J
dc.contributor.authorSegschneider, J
dc.contributor.authorStocker, BD
dc.contributor.authorTakahashi, T
dc.contributor.authorTilbrook, B
dc.contributor.authorVan Heuven, S
dc.contributor.authorViovy, N
dc.contributor.authorWanninkhof, R
dc.contributor.authorWiltshire, A
dc.contributor.authorZaehle, S
dc.date.accessioned2016-02-04T13:21:32Z
dc.date.issued2014-06-17
dc.description.abstractAccurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G ATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as ±1σ , reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6±0.4 GtC yr-1, ELUC 0.9±0.5 GtC yr-1, GATM 4.3±0.1 GtC yr-1, SOCEAN 2.5±0.5 GtC yr -1, and SLAND 2.8±0.8 GtC yr-1. For year 2012 alone, EFF grew to 9.7±0.5 GtC yr-1, 2.2% above 2011, reflecting a continued growing trend in these emissions, G ATM was 5.1±0.2 GtC yr-1, SOCEAN was 2.9±0.5 GtC yr-1, and assuming an ELUC of 1.0±0.5 GtC yr-1 (based on the 2001-2010 average), S LAND was 2.7±0.9 GtC yr-1. GATM was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52±0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1- 3.1 %) to 9.9±0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy.With this projection, cumulative emissions ofCO2 will reach about 535±55 GtC for 1870-2013, about 70% from EFF (390±20 GtC) and 30% from ELUC (145±50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP-2013-V2.3). © 2014 Author(s) CC Attribution 3.0 License.en_GB
dc.description.sponsorshipInternational Ocean Carbon Coordination Project (IOCCP)en_GB
dc.description.sponsorshipSurface Ocean Lower Atmosphere Study (SOLAS)en_GB
dc.description.sponsorshipIntegrated Marine Biogeochemistry and Ecosystem Research program (IMBER)en_GB
dc.description.sponsorshipNERCen_GB
dc.description.sponsorshipInternational Opportunities Funden_GB
dc.description.sponsorshipUS Department of Energy, Office of Science, Biological and Environmental Research (BER)en_GB
dc.description.sponsorshipNorwegian Research Councilen_GB
dc.description.sponsorshipEU FP7 for funding through projects GEOCarbon, COMBINE, CARBOCHANGE, EMBRACE, and LUC4Cen_GB
dc.description.sponsorshipUS National Science Foundationen_GB
dc.description.sponsorshipNASA LCLUC programen_GB
dc.description.sponsorshipSwiss National Science Foundationen_GB
dc.description.sponsorshipJoint UK DECC/Defra Met Office Hadley Centre Climate Programmeen_GB
dc.description.sponsorshipEnvironment Research and Technology Development Fund (S-10) of the Ministry of Environment of Japanen_GB
dc.description.sponsorshipAustralian Climate Change Science Programen_GB
dc.description.sponsorshipLeverhulme Research Fellowshipen_GB
dc.identifier.citationVol. 6, pp. 235 - 263en_GB
dc.identifier.doi10.5194/essd-6-235-2014
dc.identifier.grantnumberproject NE/103002X/1en_GB
dc.identifier.grantnumberDE-AC05-00OR22725en_GB
dc.identifier.grantnumber221355en_GB
dc.identifier.grantnumber283080en_GB
dc.identifier.grantnumber226520en_GB
dc.identifier.grantnumber264879en_GB
dc.identifier.grantnumberGA282672en_GB
dc.identifier.grantnumberGA603542en_GB
dc.identifier.grantnumberNSF AGS 12-43071en_GB
dc.identifier.grantnumberDOE DE-SC0006706en_GB
dc.identifier.grantnumberNASA NNX14AD94Gen_GB
dc.identifier.grantnumberGA01101en_GB
dc.identifier.grantnumberNSF AGS-1048827en_GB
dc.identifier.urihttp://hdl.handle.net/10871/19600
dc.language.isoenen_GB
dc.publisherCopernicus Publicationsen_GB
dc.relation.urlhttp://www.earth-syst-sci-data.net/6/235/2014/en_GB
dc.rightsCopyright © Author(s) 2014. This is an open access article. This work is distributed under the Creative Commons Attribution 3.0 License.en_GB
dc.titleGlobal carbon budget 2013en_GB
dc.typeArticleen_GB
dc.date.available2016-02-04T13:21:32Z
dc.identifier.issn1866-3508
dc.descriptionJournal Articleen_GB
dc.identifier.eissn1866-3516
dc.identifier.journalEarth System Science Dataen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record