Show simple item record

dc.contributor.authorDavidson, James
dc.contributor.authorLi, X
dc.date.accessioned2016-02-15T09:28:30Z
dc.date.issued2015-09-05
dc.description.abstractThis paper derives a simple sufficient condition for strict stationarity in the ARCH(∞) class of processes with conditional heteroscedasticity. The concept of persistence in these processes is explored, and is the subject of a set of simulations showing how persistence depends on both the pattern of lag coefficients of the ARCH model and the distribution of the driving shocks. The results are used to argue that an alternative to the usual method of ARCH/GARCH volatility forecasting should be considered.en_GB
dc.identifier.citationAwaiting citationen_GB
dc.identifier.doi10.1016/j.jempfin.2015.08.010
dc.identifier.urihttp://hdl.handle.net/10871/19813
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0927539815000948en_GB
dc.rights.embargoreasonPublisher's policyen_GB
dc.rights© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dc.titleStrict stationarity, persistence and volatility forecasting in ARCH(∞) processesen_GB
dc.typeArticleen_GB
dc.identifier.issn0927-5398
dc.descriptionAccepteden_GB
dc.descriptionArticle in Pressen_GB
dc.identifier.journalJournal of Empirical Financeen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record