Show simple item record

dc.contributor.authorHarper, AB
dc.contributor.authorWiltshire, AJ
dc.contributor.authorCox, PM
dc.contributor.authorFriedlingstein, P
dc.contributor.authorJones, CD
dc.contributor.authorMercado, LM
dc.contributor.authorSitch, S
dc.contributor.authorWilliams, K
dc.contributor.authorDuran-Rojas, C
dc.date.accessioned2018-10-24T10:33:52Z
dc.date.issued2018-07-13
dc.description.abstractDynamic global vegetation models (DGVMs) are used for studying historical and future changes to vegetation and the terrestrial carbon cycle. JULES (the Joint UK Land Environment Simulator) represents the land surface in the Hadley Centre climate models and in the UK Earth System Model. Recently the number of plant functional types (PFTs) in JULES was expanded from five to nine to better represent functional diversity in global ecosystems. Here we introduce a more mechanistic representation of vegetation dynamics in TRIFFID, the dynamic vegetation component of JULES, which allows for any number of PFTs to compete based solely on their height; therefore, the previous hardwired dominance hierarchy is removed. With the new set of nine PFTs, JULES is able to more accurately reproduce global vegetation distribution compared to the former five PFT version. Improvements include the coverage of trees within tropical and boreal forests and a reduction in shrubs, the latter of which dominated at high latitudes. We show that JULES is able to realistically represent several aspects of the global carbon (C) cycle. The simulated gross primary productivity (GPP) is within the range of observations, but simulated net primary productivity (NPP) is slightly too high. GPP in JULES from 1982 to 2011 is 133PgCyrg'1, compared to observation-based estimates (over the same time period) between 1238 and 150-175PgCyrg'1. NPP from 2000 to 2013 is 72PgCyrg'1, compared to satellite-derived NPP of 55PgCyrg'1 over the same period and independent estimates of 56.214.3PgCyrg'1. The simulated carbon stored in vegetation is 542PgC, compared to an observation-based range of 400-600PgC. Soil carbon is much lower (1422PgC) than estimates from measurements ( > 2400PgC), with large underestimations of soil carbon in the tropical and boreal forests. We also examined some aspects of the historical terrestrial carbon sink as simulated by JULES. Between the 1900s and 2000s, increased atmospheric carbon dioxide levels enhanced vegetation productivity and litter inputs into the soils, while land use change removed vegetation and reduced soil carbon. The result is a simulated increase in soil carbon of 57PgC but a decrease in vegetation carbon of 98PgC. The total simulated loss of soil and vegetation carbon due to land use change is 138PgC from 1900 to 2009, compared to a recent observationally constrained estimate of 15550PgC from 1901 to 2012. The simulated land carbon sink is 2.01.0PgCyrg'1 from 2000 to 2009, in close agreement with estimates from the IPCC and Global Carbon Project.en_GB
dc.description.sponsorshipThe authors acknowledge support from the Natural Environment Research Council (NERC) Joint Weather and Climate Research Programme through grant numbers NE/K016016/1 (Anna B. Harper) and NEC05816 (Lina M. Mercado). NERC support was also provided to Lina M. Mercado through the UK Earth System Modelling project (UKESM, grant NE/N017951/1). Anna B. Harper also acknowledges support from her EPSRC Fellowship (EP/N030141/1) and the EU H2020 project CRESCENDO (GA641816). The EU project FP7 LUC4C (GA603542) provided support for Stephen Sitch and Pierre Friedlingstein. The Met Office authors were supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101).en_GB
dc.identifier.citationVol. 11, pp. 2857 - 2873en_GB
dc.identifier.doi10.5194/gmd-11-2857-2018
dc.identifier.urihttp://hdl.handle.net/10871/34411
dc.language.isoenen_GB
dc.publisherEuropean Geosciences Union (EGU) / Copernicus Publicationsen_GB
dc.rights© Author(s) 2018. Open access. This work is distributed under the Creative Commons Attribution 4.0 License: https://creativecommons.org/licenses/by/4.0/en_GB
dc.titleVegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional typesen_GB
dc.typeArticleen_GB
dc.date.available2018-10-24T10:33:52Z
dc.identifier.issn1991-959X
dc.descriptionThis is the final version. Available on open access from EGU via the DOI in this recorden_GB
dc.identifier.journalGeoscientific Model Developmenten_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record