Show simple item record

dc.contributor.authorMachin, D
dc.date.accessioned2020-02-14T17:10:51Z
dc.date.issued2020-02-17
dc.description.abstractL-carnitine, when consumed alongside high dose oral carbohydrates or infused under insulin clamp conditions increases muscle total carnitine. This is likely via increased insulin augmented Na+/K+ -ATPase pump activity via Na+ dependent OCTN2 carnitine transport. Increased muscle total carnitine is associated with numerous physiological effects including increased fatty acid metabolism and improved exercise time trial performance. However, significant practical and health issues including weight gain exist with the current mechanism of carbohydrate/ insulin augmented carnitine uptake. The purpose of this thesis therefore was to investigate an alternative methodology that could stimulate increased muscle carnitine uptake in humans without the calorific load required via oral carbohydrates. This was investigated by using caffeine to stimulate Na+/K+ -ATPase pump activity similarly to that of the previously identified action of insulin. The effects of caffeine ingestion during hypercarnitinemia on Na+, K+ and plasma carnitine amongst other measures were investigated. Experimental group participants consumed 9mg/kg/bw caffeine over a period of 5 hours intravenous infusion of L-carnitine (C&C), with carnitine only (CARN) and caffeine only (CAFF) placebo groups also investigated. Combined hypercarnitinemia and caffeine decreased steady state plasma carnitine by 10.2% (~30 μmol.L-1) compared to carnitine infusion alone. Rate of carnitine clearance from plasma increased by 9.2% (C&C 205.1 μmol.L-1 vs 187.9 μmol.L-1 CARN) and rate of tissue uptake also increased proportionately (C&C 36.9 μmol.L-1vs 33.7 μmol.L-1CARN). Caffeine ingestion increased steady state whole blood Na+ (C&C 138.1 mmol/L, CAFF 138.2 mmol/L vs CARN 137.6mmol/L) whilst simultaneously decreasing K+ (C&C 4.1mmol/L, CAFF 4.1mmol/L vs CARN 4.3 mmol/L). Consequently, the changes in carnitine clearance were likely stimulated by caffeine’s actions influencing Na+/K+ kinetics, due to increased Na+/K+ -ATPase pump activity. Further pilot data appears to indicate that caffeine ingestion acetylated the muscle carnitine pool with free carnitine decreasing between baseline and post infusion (-1.8mmol/kg CAFF vs -0.5mmol/kg CARN) with the caffeine mediated decrease being largely attenuated when caffeine was consumed in a state of hypercarnitinemia (-0.9mmol/kg C&C). After ~14 hours post infusion CAFF continued to acetylate the carnitine pool, whilst CARN was unchanged and C&C returned towards baseline (CAFF -2.3mmol/kg, CARN +0.6mmol/kg, C&C -0.3mmol/kg) with pre-exercise muscle free carnitine obtained the absolute highest value in the C&C group (CARN 10.7mmol/kg, CAFF 10.7mmol/kg vs C&C 12.5mmol/kg). Neither carnitine, caffeine nor a combination of the two appeared to significantly alter any markers of metabolism or exercise performance in the pilot data (n=2) regardless of condition. Collectively these novel findings indicate that it is likely that caffeine is able to augment human skeletal muscle carnitine uptake but may lead to increased acetylation of the muscle carnitine pool. The direct effects of these findings on muscle total carnitine, metabolism and exercise performance are yet to be identified. However, a novel mechanism for increasing plasma carnitine clearance and thus likely increased skeletal muscle carnitine uptake appears to have been discovered.en_GB
dc.identifier.urihttp://hdl.handle.net/10871/40875
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.rights.embargoreasonThis thesis has been embargoed until the 06/Sep/2024 as the author is seeking a potential patent for the results of the thesis.en_GB
dc.subjectL-carnitineen_GB
dc.subjectPlasma carnitine clearanceen_GB
dc.subjectCaffeineen_GB
dc.subjectNa+/K+-ATPase pumpen_GB
dc.subjectOCTN2en_GB
dc.titleInvestigating the optimisation of the ergogenic effects of L-carnitine supplementation in humansen_GB
dc.typeThesis or dissertationen_GB
dc.date.available2020-02-14T17:10:51Z
dc.contributor.advisorWall, Ben_GB
dc.contributor.advisorStephens, Fen_GB
dc.publisher.departmentSport and Exercise Sciencesen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dc.type.degreetitleMaster of Science by Research in Sport and Health Sciencesen_GB
dc.type.qualificationlevelMastersen_GB
dc.type.qualificationnameMbyRes Dissertationen_GB
rioxxterms.versionNAen_GB
rioxxterms.licenseref.startdate2020-02-17
rioxxterms.typeThesisen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record