Fixed-b asymptotic approximation of the sampling behaviour of nonparametric spectral density estimators
Hashimzade, Nigar; Vogelsang, Timothy J.
Date: 1 January 2008
Journal
Journal of Time Series Analysis
Publisher
Blackwell
Publisher DOI
Abstract
We propose a new asymptotic approximation for the sampling behaviour of nonparametric estimators of the spectral density of a covariance stationary time series. According to the standard approach, the truncation lag grows more slowly than the sample size. We derive first-order limiting distributions under the alternative assumption ...
We propose a new asymptotic approximation for the sampling behaviour of nonparametric estimators of the spectral density of a covariance stationary time series. According to the standard approach, the truncation lag grows more slowly than the sample size. We derive first-order limiting distributions under the alternative assumption that the truncation lag is a fixed proportion of the sample size. Our results extend the approach of Neave (1970), who derived a formula for the asymptotic variance of spectral density estimators under the same truncation lag assumption. We show that the limiting distribution of zero-frequency spectral density estimators depends on how the mean is estimated and removed. The implications of our zero-frequency results are consistent with exact results for bias and variance computed by Ng and Perron (1996). Finite sample simulations indicate that the new asymptotics provides a better approximation than the standard one.
Economics
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0