Universality of Nash components
Balkenborg, Dieter; Vermeulen, Dries
Date: 1 July 2014
Journal
Games and Economic Behavior
Publisher
Elsevier
Publisher DOI
Abstract
We show that Nash equilibrium components are universal for the collection of connected polyhedral sets. More precisely for every polyhedral set we construct a so-called binary game-a game where all players have two pure strategies and a common utility function with values either zero or one-whose success set (the set of strategy profiles ...
We show that Nash equilibrium components are universal for the collection of connected polyhedral sets. More precisely for every polyhedral set we construct a so-called binary game-a game where all players have two pure strategies and a common utility function with values either zero or one-whose success set (the set of strategy profiles where the maximal payoff of one is indeed achieved) is homeomorphic to the given polyhedral set. Since compact semi-algebraic sets can be triangulated, a similar result follows for the collection of connected compact semi-algebraic sets.We discuss implications of our results for the strategic stability of success sets, and use the results to construct a Nash component with index k for any fixed integer k.
Economics
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0